下列说法正确的是
A.做平抛运动的物体,一段时间的平均速度方向为该段时间内物体的初位置指向末位置的方向
B.某人骑自行车以恒定的速率驶过一段弯路,自行车的运动是匀速运动
C.做匀变速曲线运动的物体,加速度的方向与速度的方向可能在同一条直线上
D.做圆周运动的物体所受合力的方向必定指向轨迹的圆心
如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60m的轻细绳,它的一端系住一质量为m的小球P ,另一端固定在板上的O点.当平板的倾角固定为时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0m/s .若小球能保持在板面内作圆周运动,倾角的值应在什么范围内?(取重力加速度g=10m/s2)
如图所示,一水平的长L=2.25m的传送带与平板紧靠在一起,且上表面在同一水平面,皮带以v0=4m/s匀速顺时针转动,现在传送带上左端静止放上一质量为m=1kg的煤块(视为质点),煤块与传送带及煤块与平板上表面之间的动摩擦因数为均为μ1=0.2,经过一段时间,煤块被传送到传送带的右端,此过程在传送带上留下了一段黑色痕迹,随后煤块在平稳滑上右端平板上的同时,在平板右侧施加一个水平向右恒力F=17N,F作用了t0=1s时煤块与平板速度恰相等,此时刻撤去最终煤块没有从平板上滑下,已知平板质量M=4kg,(重力加速度为g=10m/s2),求:
(1)传送带上黑色痕迹的长度;
(2)求平板与地面间动摩擦因数的大小;
(3)平板上表面至少多长?(计算结果保留两位有效数字)。
如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°.重力加速度大小为g.
(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;
(2)ω=(1±k)ω0,且0<k<<1,求小物块受到的摩擦力大小和方向.
如图所示,半径为R的光滑圆周轨道AB固定在竖直平面内,O为圆心,OA与水平方向的夹角为30°,OB在竖直方向.一个可视为质点的小球从O点正上方某处以某一水平初速度向右抛出,小球恰好能无碰撞地从A点进入圆轨道内侧,此后沿圆轨道运动到达B点.已知重力加速度为g,求:(不计空气阻力)
(1)小球初速度的大小;
(2)小球运动到B点时对圆轨道压力的大小.
如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直面内做完整的圆周运动.已知水平地面上的C点位于O点正下方,且到O点的距离为1.9L.不计空气阻力.求:
(1)小球通过最高点A时的速度vA;
(2)小球通过最低点B时,细线对小球的拉力T;
(3)若小球运动到最低点B时细线恰好断裂,小球落地点到C点的距离.