一物体在两个力F1、F2的共同作用下发生了一段位移,做功分别为W1=6J、W2=-6J,下列说法正确的是( )
A.这两个力一定大小相等、方向相反
B.F1是动力,F2是阻力
C.这两个力做的总功为0
D.F1比F2做的功多
一个力对运动物体做了负功,则说明( )
A.这个力一定阻碍物体的运动
B.这个力不一定阻碍物体的运动
C.这个力与物体运动方向的夹角α>90°
D.这个力与物体运动方向的夹角α<90°
如图,电阻不计的足够长的平行光滑金属导轨PX、QY相距L=0.5m,底端连接电阻R=2Ω,导轨平面倾斜角θ=30°,匀强磁场垂直于导轨平面向上,磁感应强度B=1T.质量m=40g、电阻R=0.5Ω的金属棒MN放在导轨上,金属棒通过绝缘细线在电动机牵引下从静止开始运动,经过时间t1=2s通过距离x=1.5m,速度达到最大,这个过程中电压表示数U0=8.0V,电流表实数I0=0.6A,示数稳定,运动过程中金属棒始终与导轨垂直,细线始终与导轨平行且在同一平面内,电动机线圈内阻r0=0.5Ω,g=10m/s2..求:
(1)细线对金属棒拉力的功率P多大?
(2)从静止开始运动的t1=2s时间内,电阻R上产生的热量QR是多大?
(3)用外力F代替电动机沿细线方向拉金属棒MN,使金属棒保持静止状态,金属棒到导轨下端距离为d=1m.若磁场按照右图规律变化,外力F随着时间t的变化关系式?
如图所示,MN、PQ是两条水平、平行放置的光滑金属导轨,导轨的右端接理想变压器的原线圈,变压器的副线圈与电阻R=20Ω组成闭合回路,变压器的原副线圈匝数之比n1∶n2=1∶10,导轨宽L=5m.质量m=2kg、电阻不计的导体棒ab垂直MN、PQ放在导轨上,在水平外力F作用下,从t=0时刻开始在图示的两虚线范围内做简谐运动,其速度随时间变化的规律是v=2sin20πt(m/s)。垂直轨道平面的匀强磁场的磁感应强度B=4T。导轨、导线和线圈电阻不计。求:
(1)在ab棒中产生的电动势的表达式,ab棒中产生的是什么电流?
(2)电阻R上的热功率P;
(3)从t=0到t1=0.025s的时间内,通过外力F做功需要外界提供给该装置的能量E
如图甲所示,长、宽分别为L1、L2的矩形金属线框位于竖直平面内,其匝数为n,总电阻为r,可绕其竖直中心轴O1O2转动.线框的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷和定值电阻R相连.线框所在空间有水平向右均匀分布的磁场,磁感应强度B的大小随时间t的变化关系如图乙所示,其中B0、B1和t1均为已知.在0~t1的时间内,线框保持静止,且线框平面和磁场垂直;t1时刻后线框在外力的驱动下开始绕其竖直中心轴以角速度ω匀速转动.求:
(1)0~t1时间内通过电阻R的电流大小;
(2)线框匀速转动后,在转动一周的过程中电流通过电阻R产生的热量;
(3)线框匀速转动后,从图甲所示位置转过90°的过程中,通过电阻R的电荷量.
如图所示,在坐标xoy平面内存在B=2.0T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1和R2,其R1=4.0Ω、R2=12.0Ω.现有一足够长、质量m=0.10kg的金属棒MN在竖直向上的外力F作用下,以v=3.0m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,g取10m/s2,求:
(1)金属棒MN在导轨上运动时感应电流的最大值;
(2)外力F的最大值;
(3)金属棒MN滑过导轨OC段,整个回路产生的热量.