如图甲所示,导体棒MN置于水平导轨上,PQMN所围的面积为S,PQ之间有阻值为R的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t0时间内磁感应强度的变化情况如图乙所示,导体棒MN始终处于静止状态.下列说法正确的是( )
A.在0~t0和t0~2t0时间内,导体棒受到的导轨的摩擦力方向相同
B.在t0~2t0时间内,通过电阻R的电流大小为
C.在t0~2t0时间内,通过电阻R的电荷量为
D.在0~2t0时间内,回路中产生的焦耳热为Q=
电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C.两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计.炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触.首先开关S接1,使电容器完全充电.然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动.当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨.问:
(1)磁场的方向;
(2)MN刚开始运动时加速度a的大小;
(3)MN离开导轨后电容器上剩余的电荷量Q是多少.
如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系.
如图,两根光滑平行金属导轨置于水平面(纸面)内,导轨间距为L,左端连有阻值为R的电阻。一金属杆置于导轨上,金属杆右侧存在一磁感应强度大小为B、方向竖直向下的匀强磁场区域。已知金属杆以速度v0向右进入磁场区域,做匀变速直线运动,到达磁场区域右边界(图中虚线位置)时速度恰好为零。金属杆与导轨始终保持垂直且接触良好。除左端所连电阻外,其他电阻忽略不计。求金属杆运动到磁场区域正中间时所受安培力的大小及此时电流的功率.
如图所示,倾角为θ=37°的两根平行长直金属导轨的间距为d,其底端接有阻值为R的电阻。整个装置处在垂直于斜面向上、磁感应强度大小为B的匀强磁场中,质量均为m(质量分布均匀)、电阻均为R的导体棒ab、cd垂直于导轨放置,且与两导轨保持良好接触,两导体棒与导轨间的动摩擦因数均为μ=0.5;现棒ab在恒力F作用下沿导轨向上做匀速运动,棒cd能保持静止状态,导轨电阻不计,重力加速度大小为g,sin 37°=0.6,cos 37°=0.8.求导体棒ab速度大小的取值范围。
如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求:
(1)作用在金属棒ab上的安培力的大小;
(2)金属棒运动速度的大小.