一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示.时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2.求
(1)木板与地面间的动摩擦因数及小物块与木板间的动摩擦因数;
(2)木板的最小长度;
(3)木板右端离墙壁的最终距离.
如图,两个滑块A和B的质量分别为mA=1 kg和mB=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1。某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s,A、B相遇时,A与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2,求:
(1)B与木板相对静止时,木板的速度;
(2)A、B开始运动时,两者之间的距离。
如图所示为某工厂的货物传送装置,倾斜运输带AB(与水平面成α=37°)与一斜面BC(与水平面成θ=30°)平滑连接,B点到C点的距离为L=0.6 m,运输带运行速度恒为v0=5 m/s,A点到B点的距离为x=4.5 m,现将一质量为m=0.4 kg的小物体轻轻放于A点,物体恰好能到达最高点C点,已知物体与斜面间的动摩擦因数μ1=,求:(g=10 m/s2,sin 37°=0.6,cos 37°=0.8,空气阻力不计)
(1) 小物体运动到B点时的速度v的大小;
(2) 小物体与运输带间的动摩擦因数μ;
(3) 小物体从A点运动到C点所经历的时间t.
如图所示为粮袋的传送装置,已知AB间长度为L,传送带与水平方向的夹角为θ,工作时其运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A点将粮袋放到运行中的传送带上,关于粮袋从A到B的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力) ( )
A.粮袋到达B点的速度与v比较,可能大,也可能相等或小
B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将一定以速度v做匀速运动
C.若μ≥tan θ,则粮袋从A到B一定是一直做加速运动
D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a>gsinθ
如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2(v1<v2)的小物块从与传送带等高的光滑水平地面上滑上传送带,从小物块滑上传送带开始计时,物块在传送带上运动的v﹣t图象可能的是( )
A. B. C. D.
如图所示,一质量m=0.4kg的小物块,以V0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30o,物块与斜面之间的动摩擦因数.重力加速度g取10 m/s2.
(1)求物块加速度的大小及到达B点时速度的大小.
(2)拉力F与斜面的夹角多大时,拉力F最小?拉力F的最小值是多少?