满分5 > 高中物理试题 >

某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为 L,上下两个相同的...

某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为 L,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,两磁场的间距为d.装置右端有一收集板,M、N、P为板上的三点,M位于轴线OO′上,N、P分别位于下方磁场的上、下边界上.在纸面内,质量为m、电荷量为-q的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置.不计粒子的重力.

(1)求磁场区域的宽度h;

(2)欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量Δv;

(3)欲使粒子到达M点,求粒子入射速度大小的可能值.

 

(1)h=(-)(1-);(2)Δv=(-); (3)vn=(-)(2≤n<,n取整数) 【解析】 试题(1)设带电粒子在磁场中运动的轨道半径为r,依题意作出带电粒子的运动轨迹如下图所示. 由图中几何关系有:L=3rsin30°+,h=r(1-cos30°) 解得:h=(-)(1-) (2)设带电粒子初始入射速度为v1,改变速度后仍然经过上方的磁场区域一次后到达N点,此时速度的改变量最小,设为v2,粒子改变速度后,在磁场中运动的轨道半径为r′,带电粒子的运动轨迹如下图所示. 由图中几何关系有:L=4r′sin30°+ 根据牛顿第二定律和洛伦兹力大小公式有:qv1B=,qv2B= 粒子入射速度的最小变化量Δv=|v2-v1| 联立以上各式解得:Δv=(-) (3)粒子可能从上方磁场出来后经过M点,也可能从下方磁场出来后经过M点,不妨假设粒子共n次经过了磁场区域到达了M点,此时在磁场中运动的轨道半径为rn,速度为vn,根据牛顿第二定律和洛伦兹力大小公式有:qvnB= 根据几何关系有:L=2nrnsin30°+ 解得:vn=(-) 由于粒子经过上方的磁场区域一次,恰好到达P点,因此粒子不可能只经过上方一次射出后直接到达M点,因此有:n≥2 又因为,粒子必须能够经过磁场改变其运动速度的方向才能到达M点,因此满足n<= 所以:vn=(-)(其中2≤n<,且n为整数)
复制答案
考点分析:
相关试题推荐

如图,在圆心为O的圆形区域内存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场.边界上的一粒子源A,向磁场区域发射出质量为m、带电量为qq>0)的粒子,其速度大小均为v,方向垂直于磁场且分布在AO右侧α角的范围内(α为锐角).磁场区域内的半径为 ,其左侧有与AO平行的接收屏,不计带电粒子所受重力和相互作用力.求:

(1)沿AO方向入射的粒子离开磁场时的方向与入射方向的夹角;

(2)接收屏上能接收到带电粒子区域的宽度.

 

查看答案

如图所示,在半径为的圆形区域内有水平向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计.

(1)若粒子对准圆心射入,求它在磁场中运动的时间;

(2)若粒子对准圆心射入,且速率为,求它打到感光板上时速度的垂直分量.

 

查看答案

在直角坐标系xOy平面内有一磁场边界圆,半径为R,圆心在坐标原点O,圆内充满垂直该平面的匀强磁场,紧靠圆的右侧固定放置与y轴平行的弹性挡板,如图所示。一个不计重力的带电粒子以速度v0A点沿负y方向进入圆内,刚好能垂直打在挡板B点上,若该粒子在A点速度v0向右偏离y60°角进入圆内,粒子与档板相碰时间极短且无动能损失,则该粒子(  )

A.B点上方与挡板第二次相碰

B.经过时间第二次射出边界圆

C.第二次与挡板相碰时速度方向与挡板成60°

D.经过时间第二次与挡板相碰

 

查看答案

太空粒子探测器是由加速、偏转和收集三部分组成,其原理可简化如下:如图甲所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行于边界ACDB,OMN板的距离OPL.假设太空中漂浮着质量为m、电荷量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其他星球对粒子引力的影响.

(1)求粒子到达O点时速度的大小;

(2)如图乙所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,磁场方向垂直纸面向内,则发现从AB圆弧面收集到的粒子有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁场磁感应强度B0的大小;

(3)随着所加磁场大小的变化,试定量分析收集板MN上的收集效率η与磁感应强度B的关系.

 

查看答案

太空粒子探测器是由加速装置、偏转装置和收集装置三部分组成,其原理可简化如下:如图所示,辐射状的加速电场区域边界为两个同心圆,圆心为O,外圆的半径R1=1m,电势φ1=25V,内圆的半径R2=0.5m,电势φ2=0。内圆内有磁感应强度大小B=1×10-2T、方向垂直纸面向里的匀强磁场,收集板MN与内圆的一条直径重合.假设太空中漂浮着质量m=1×10-10kg、电荷量q=2×10-4C的带正电粒子,它们能均匀地吸附到外圆面上,并被加速电场从静止开始加速,进入磁场后,发生偏转,最后打在收集板MN上并被吸收(收集板两侧均能吸收粒子),不考虑粒子的碰撞和粒子间的相互作用。

1)求粒子到达内圆时速度的大小;

2)分析外圆上哪些位置的粒子进入磁场后在磁场中运动的总时间最长,并求该最长时间;

3)分析收集板MN上哪些位置能接收到粒子,并求能接收到粒子的那部分收集板的总长度。

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.