满分5 > 高中物理试题 >

如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电...

如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:

(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

(2)金属棒的速度大小随时间变化的关系.

 

(1) (2) 【解析】 试题(1)由法拉第电磁感应定律,求出感应电动势;再与相结合求出电荷量与速度的关系式. (2)由左手定则来确定安培力的方向,并求出安培力的大小;借助于、及牛顿第二定律来求出速度与时间的关系. 【解析】 (1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv, 平行板电容器两极板之间的电势差为U=E, 设此时电容器极板上积累的电荷量为Q, 按定义有, 联立可得,Q=CBLv. (2)设金属棒的速度大小为v时,经历的时间为t,通过金属棒的电流为i, 金属棒受到的磁场力方向沿导轨向上,大小为f1=BLi, 设在时间间隔(t,t+△t)内流经金属棒的电荷量为△Q, 则△Q=CBL△v, 按定义有:, △Q也是平行板电容器极板在时间间隔(t,t+△t)内增加的电荷量, 由上式可得,△v为金属棒的速度变化量, 金属棒所受到的摩擦力方向沿导轨斜面向上, 大小为:f2=μN,式中,N是金属棒对于导轨的正压力的大小, 有N=mgcosθ, 金属棒在时刻t的加速度方向沿斜面向下, 设其大小为a, 根据牛顿第二定律有:mgsinθ﹣f1﹣f2=ma, 即:mgsinθ﹣μmgcosθ=CB2L2a+ma; 联立上此式可得:. 由题意可知,金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为. 答:(1)电容器极板上积累的电荷量与金属棒速度大小的关系为Q=CBLv; (2)金属棒的速度大小随时间变化的关系.
复制答案
考点分析:
相关试题推荐

如图所示,MNPQ为水平放置的足够长的平行光滑导轨,导轨间距,导轨左端连接一个的电阻和一个理想电流表A,导轨的电阻不计,整个装置放在磁感应强度的有界匀强磁场中,磁场方向垂直于导轨平面向下一根质量为、电阻为的金属棒与磁场的左边界cd重合.现对金属棒施加一水平向右、大小为0.4N的恒定拉力F,使棒从静止开始向右运动,已知在金属棒离开磁场右边界ef前电流表的示数已保持稳定.

1)求金属棒离开磁场右边界ef时的速度大小.

2)当拉力F的功率为0.08W时,求金属棒的加速度.

 

查看答案

如图所示,用粗细均匀的电阻丝绕制的矩形导线框abcd处于匀强磁场中,另一种材料的导体棒MN可与导线框保持良好的接触并做无摩擦滑动,导体棒MN在外力作用下从导线框左端开始做切割磁感线的匀速运动,一直滑到右端,在这个过程中导线框上消耗的电功率的变化情况可能为(   

A.逐渐增大 B.先增大后减小 C.先减小后增大 D.先增大后减小,再增大,接着再减小

 

查看答案

如图所示,匝数N=100匝,截面积S=0.2m2,电阻r=0.5Ω的圆形线圈MN处于垂直纸面向里的匀强磁场内,,磁感应强度随时间按B=0.6+0.02tT)的规律变化,处于磁场外的电阻R1=3.5ΩR2=6Ω,电容C=30μF,开关S开始时未闭合,求:

1)闭合S后,线圈两端MN两点间的电压UMN和电阻R2消耗的电功率;

2)闭合S一段时间后又打开S,则S断开后通过R2的电荷量为多少?

 

查看答案

如图所示,一个边长为a、电阻为R的等边三角形线框,在外力作用下以速度v匀速穿过宽度均为α的两个匀强磁场,这两个磁场的磁感应强度大小均为B,方向相反.线框运动方向与底边平行且与磁场边缘垂直.取逆时针方向的电流为正,试通过计算,画出从图示位置开始,线框中产生的感应电流I与沿运动方向的位移x的函数图像.

 

查看答案

矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是( )

A. B.

C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.