如图(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0,一电量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力.
(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小.
(2)若撤去电场,如图(b),已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间.
(3)在图(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
如图所示,一带电量为q=2×10-9c,质量为m=1.8×10-16kg的粒子,在直线上一点O沿30°角方向进入磁感强度为B的匀强磁场中,经历t=1.5×10-6s后到达直线上另一点P.求:
(1)粒子作圆周运动的周期T;
(2)磁感强度B的大小;
(3)若OP的距离为0.1m,则粒子的运动速度v多大?
回旋加速器核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接.以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速.两盒放在磁惑应强度为B的匀强磁场中.磁场方向垂直于盒底面.粒子源置于盒的圆心附近,若粒子源射出的粒子带电荷量为q,质量为m,粒子最大回旋半径为Rn,其运动轨迹如图所示.问.
(1)D形盒内有无电场?
(2)粒子在盒内做何种运动?
(3)所加交流电压频率应是多大.粒子运动的角速度为多大?
(4)粒子离开加速器时速度为多大?最大动能为多少?
(5)设两D形盒间电场的电势差为U,盒间距离为d,其间电场均匀,求把静止粒子加速到上述能量所需时间.
如图为质谱仪的原理示意图,电荷量为q、质量为m的带正电的粒子从静止开始经过电势差为U的加速电场后进入粒子速度选择器,选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E、方向水平向右.已知带电粒子能够沿直线穿过速度选择器,从G点垂直MN进入偏转磁场,该偏转磁场是一个以直线MN为边界、方向垂直纸面向外的匀强磁场.带电粒子经偏转磁场后,最终到达照相底片的H点.可测量出G、H间的距离为L.带电粒子的重力可忽略不计.求
(1).粒子从加速电场射出时速度v的大小.
(2).粒子速度选择器中匀强磁场的磁感强度B1的大小和方向.
(3).偏转磁场的磁感强度B2的大小.
质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为和,周期分别为和,则下列选项正确的是( )
A.∶=1∶2,∶=1∶2
B.∶=1∶1,∶=1∶1
C.∶=1∶1,∶=1∶2
D.∶=1∶2,∶=1∶1
一质子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是
A. 可能做类平抛运动
B. 一定做匀变速直线运动
C. 可能做匀速直线运动
D. 只能做匀速圆周运动