如图所示,在直角坐标系xOy的第一象限中两个相同的直角三角形区域Ⅰ、Ⅱ内分别充满了方向相反、磁感应强度大小均为B的匀强磁场,已知C点坐标为(,l),质量为m,带电荷量为q的正电荷从A(,l)点以一定的速度平行于y方向垂直进入磁场,并从x轴上的D点(图中未画出)垂直x轴离开磁场,电荷重力不计.
(1)求D点的位置坐标及电荷进入磁场区域Ⅰ时的速度大小v;
(2)若将区域Ⅱ内的磁场换成沿-x轴方向的匀强电场,该粒子仍从A点以原速度进入磁场区域Ⅰ,并最终仍能垂直x轴离开,求匀强电场的场强E.
如图所示,半径为R的圆形区域内存在着磁感应强度为B的匀强磁场,方向垂直于纸面向里,一带负电的粒子(不计重力)沿水平方向以速度v正对圆心入射,通过磁场区域后速度方向偏转了60°。
(1)求粒子的比荷及粒子在磁场中的运动时间t。
(2)如果想使粒子通过磁场区域后速度方向的偏转角度最大,在保持原入射速度的基础上,需将粒子的入射点沿圆弧向上平移的距离d为多少?
如图甲所示,在水平地面上固定一对与水平面倾角为的光滑平行导电轨道,轨道间的距离为,两轨道底端的连线与轨道垂直,顶端接有电源.将一根质量为的直导体棒放在两轨体会配合,且与两轨道垂直.已知轨客导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为,方向由到,图乙为图甲沿方向观察的平面图.若重力加速度为,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止.
()请在图乙所示的平面图中画出导体棒受力的示意图;
()求出磁场对导体棒的安培力的大小;
()如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度的最小值的大小和方向.
如图所示,在区域Ⅰ和区域Ⅱ内分别存在与纸面垂直但方向相反的匀强磁场,区域Ⅱ内磁感应强度是区域Ⅰ内磁感应强度的2倍,一带电粒子在区域Ⅰ左侧边界处以垂直边界的速度进入区域Ⅰ,发现粒子离开区域Ⅰ时速度方向改变了30°,然后进入区域Ⅱ,测得粒子在区域Ⅱ内的运动时间与区域Ⅰ内的运动时间相等,则下列说法正确的是( )
A.粒子在区域Ⅰ和区域Ⅱ中的速率之比为1∶1
B.粒子在区域Ⅰ和区域Ⅱ中的角速度之比为2∶1
C.粒子在区域Ⅰ和区域Ⅱ中的圆心角之比为1∶2
D.区域Ⅰ和区域Ⅱ的宽度之比为1∶1
如图所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,在O点存在的垂直纸面向里运动的匀速电子束.∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的电子受到的洛伦兹力大小为F1.若将M处长直导线移至P处,则O点的电子受到的洛伦兹力大小为F2.那么F2与F1之比为( )
A. B. C.1:1 D.1:2
如图所示,横截面为正方形abcd的有界匀强磁场,磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场,不计电子重力及相互之间的作用,对于从不同边界射出的电子,下列判断正确的是( )
A.从ad边射出的电子在磁场中运动的时间都相等
B.从c点离开的电子在磁场中运动时间最长
C.电子在磁场中运动的速度偏转角最大为π
D.从bc边射出的电子的速度一定大于从ad边射出的电子的速度