如图,光滑平行金属导轨间距为L,与水平面夹角为θ,两导轨上端用阻值为R的电阻相连,该装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面.质量为m的金属杆ab以沿导轨平面向上的初速度v0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab与导轨垂直且接触良好,不计ab和导轨的电阻及空气阻力.
(1)求ab开始运动时的加速度a;
(2)分析并说明ab在整个运动过程中速度、加速度的变化情况;
(3)分析并比较ab上滑时间和下滑时间的长短.
如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5T,磁场宽度d=0.55m,有一边长L=0.4m、质量m1=0.6kg、电阻R=2Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少?
(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大?
(3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2m/s,求整个运动过程中ab边产生的热量为多少?
如图所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R,匀强磁场垂直斜面向上.质量为m、电阻不计的金属棒ab在沿斜面与棒垂直的恒力F作用下沿导轨匀速上滑,上升高度为h,在这个过程中( )
A.金属棒所受各力的合力所做的功等于零
B.金属棒所受各力的合力所做的功等于mgh和电阻R上产生的焦耳热之和
C.恒力F与重力的合力所做的功等于棒克服安培力所做的功与电阻R上产生的焦耳热之和
D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热
为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置.如图所示,自行车后轮由半径r1=5.0×10-2m的金属内圈、半径r2=0.40m的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=π/6 .后轮以角速度 ω=2πrad/s相对于转轴转动.若不计其它电阻,忽略磁场的边缘效应.
(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;
(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;
(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差Uab随时间t变化的Uab-t图象;
(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价.
如图(a)所示,一个电阻值为R,匝数为n的圆形金属线与阻值为2R的电阻R1连结成闭合回路.线圈的半径为r1 . 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t0和B0. 导线的电阻不计.求0至t1时间内
(1)通过电阻R1上的电流大小和方向;
(2)通过电阻R1上的电量q及电阻R1上产生的热量.
如图所示,固定在水平面上的金属架abcd处在竖直向下的匀强磁场中,金属棒MN沿框架以速度v向右做匀速直线运动,时,磁感应强度为,此时MN到达的位置恰好使MbcN构成一个边长为l的正方形,为使MN棒中不产生感应电流,从开始,磁感应强度B随时间t变化的关系图象可能为
A. B.
C. D.