如图所示,凸字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l.匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动.在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q.线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g.求:
(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;
(2)磁场上下边界间的距离H.
如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是( )
A. B. C. D.\
如图所示,金属杆ab、cd置于足够长的固定平行轨道MN、PQ上,且可沿轨道滑动,轨道所在的空间有竖直向上的匀强磁场,导轨电阻不计.下列说法正确的是( )
A.若轨道光滑,给ab一初速度,则最终ab、cd一定做匀速运动
B.若轨道光滑,给ab施加一个垂直于ab且水平向右的恒定外力,则最终两者一定做匀加速运动,且速度差恒定
C.若轨道粗糙,给ab施加一个垂直于ab且水平向右的恒定外力,则最终两者一定做匀加速运动,且速度差恒定
D.若去掉cd,将一电容器接在MN、PQ之间、cd原来所在的位置,轨道光滑,给ab施加一个垂直于ab且水平向右的恒定外力,则最终ab一定做匀加速直线运动
如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0,在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.
(1)求初始时刻导体棒受到的安培力.
(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为Ep,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?
(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?
如图所示,水平面上有两根光滑金属导轨平行固定放置,导轨的电阻不计,间距为l=0.5m,左端通过导线与阻值R=3Ω的电阻连接,右端通过导线与阻值为RL=6Ω的小灯泡L连接,在CDEF矩形区域内有竖直向上,磁感应强度B=0.2T的匀强磁场.一根阻值r=0.5Ω、质量m=0.2kg的金属棒在恒力F=2N的作用下由静止开始从AB位置沿导轨向右运动,经过t=1s刚好进入磁场区域.求金属棒刚进入磁场时:
(1)金属棒切割磁场产生的电动势;
(2)小灯泡两端的电压和金属棒受安培力.
如图(a)所示,水平放置的两根平行金属导轨,间距L=0.3m.导轨左端连接R=0.6 的电阻,区域abcd内存在垂直于导轨平面B=0.6T的匀强磁场,磁场区域宽D="0.2" m.细金属棒A1和A2用长为2D=0.4m的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为t="0.3",导轨电阻不计,使金属棒以恒定速度r="1.0" m/s沿导轨向右穿越磁场,计算从金属棒A1进入磁场(t=0)到A2离开磁场的时间内,不同时间段通过电阻R的电流强度,并在图(b)中画出
.