某工厂车间通过图示装置把货物运送到二楼仓库,AB为水平传送带,CD为倾角θ=37°、长s=3m的倾斜轨道,AB与CD通过长度忽略不计的圆弧轨道平滑连接,DE为半径r=0.4m的光滑圆弧轨道,CD与DE在D点相切,OE为竖直半径,FG为二楼仓库地面(足够长且与E点在同一高度),所有轨道在同一竖直平面内.当传送带以恒定速率v=10m/s运行时,把一质量m=50kg的货物(可视为质点)由静止放入传送带的A端,货物恰好能滑入二楼仓库,已知货物与传送带、倾斜轨道及二楼仓库地面间的动摩擦因数均为μ=0.2,取g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)货物在二楼仓库地面滑行的距离;
(2)传送带把货物从A端运送到B端过程中因摩擦而产生的内能.
如图所示,在倾角=37°的光滑斜面上用装置T锁定轨道ABCD.AB为平行于斜面的粗糙直轨道,CD为光滑的四分之一圆孤轨道,AB与CD在C点相切,质量m=0.5kg的小物块(可视为质点)从轨道的A端由静止释放,到达D点后又沿轨道返回到直轨道AB中点时速度为零.已知直轨道AB长L=1m,轨道总质量M=0.1kg,重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.
(1)求小物块与直轨道的动摩擦因数;
(2)求小物块对圆弧轨道的最大压力;
(3)若小物块第一次返回C点时,解除轨道锁定,求从此时起到小物块与轨道速度相同时所用的时间.
如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直,a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为,两物块与地面间的动摩擦因数均相同,现使a以初速度v0向右滑动,此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g,求物块与地面间的动摩擦因数满足的条件.
如图,质量为1 kg的小物块从倾角为30°、长为2 m的光滑固定斜面顶端由静止开始下滑,若选初始位置为零势能点,重力加速度取10m/s2,则它滑到斜面中点时具有的机械能和动能分别是
A.5 J,5 J B.10 J,15 J
C.0,5 J D.0,10 J
如图所示,在倾角为θ的斜面上,轻质弹簧一与斜面底端固定,另一端与质量为M的平板A连接,一个质量为m的物体B靠在平板的右测,A、B与斜面的动摩擦因数均为μ.开始时用手按住物体B使弹簧处于压缩状态,现放手,使A和B一起沿斜面向上运动距离L时,A和B达到最大速度v.则以下说法正确的是( )
A.A和B达到最大速度v时,弹簧是自然长度
B.若运动过程中A和B能够分离,则A和B恰好分离时,二者加速度大小均为g( sinθ+μcosθ )
C.从释放到A和B达到最大速度v的过程中.弹簧对A所做的功等于Mv2+MgLsinθ+μMgLcosθ
D.从释放到A和B达到最大速度v的过程中,B受到的合力对它做的功等于mv2
如图所示,长为2L的轻杆上端固定一质量为m的小球,下端用光滑铰链连接于地面上的O点,杆可绕O点在竖直平面内自由转动.定滑轮固定于地面上方L处,电动机由跨过定滑轮且不可伸长的绳子与杆的中点相连.启动电动机,杆从虚线位置绕O点逆时针倒向地面,假设整个倒下去的过程中,杆做匀速转动.则在此过程中
A.小球重力做功为2mgL
B.绳子拉力做功大于2mgL
C.重力做功功率逐渐增大
D.绳子拉力做功功率先增大后减小