如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.
(1)求小滑块运动到C点时的速度大小vc;
(2)求小滑块从A点运动到C点过程中克服摩擦力做的功Wf;
(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为vD,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小vp.
如图所示,质量为M的导体棒ab,垂直放在相距为L 的平行粗糙金属导轨上,金属棒和导轨之间的动摩擦因数为.导轨平面与水平面的夹角为,并处于磁感应强度大小为B方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置间距为d的平行金属板,R和表示定值电阻和滑动变阻器的阻值,不计其他电阻.
(1)调节释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.
(2)改变,待棒沿导轨再次匀速下滑后,将质量为m带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的.
如图所示,光滑平行的水平金属导轨MNPQ相距L,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B,一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距S,现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)。求:
(1)棒ab在离开磁场右边界时的速度;
(2)棒ab通过磁场区的过程中整个回路所消耗的电能。
如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B.一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角.设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力.求:
(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;
(3)圆形磁场区域的半径r.
用如图所示电路测量电源的电动势和内阻:
实验器材:
待测电源(电动势约3V,内阻约2Ω)
电流表A,电压表V
保护电阻R1(阻值10Ω)
定值电阻R2(阻值5Ω)
滑动变阻器R,开关S,导线若干。
实验主要步骤:
①将滑动变阻器接入电路的阻值调到最大,闭合开关
②逐渐减小滑动变阻器接入电路的阻值,记下电压表的示数U和相应电流表的示数I
③以U为纵坐标,I为横坐标,作U—I图线(U、I都用国际单位)
④求出U—I图线斜率的绝对值k和在横轴上的截距a
回答下列问题:
(1)电流表最好选用____;
A.电流表(0200mA,内阻约2Ω) B.电流表(030mA,内阻约2Ω)
(2)滑动变阻器的滑片从左向右滑动,发现电压表示数增大。两导线与滑动变阻器接线柱连接情况是___;
A.两导线接在滑动变阻器电阻丝两端的接线柱
B.两导线接在滑动变阻器金属杆两端的接线柱
C.一条导线接在滑动变阻器金属杆左端接线柱,另一条导线接在电阻丝左端接线柱
D.一条导线接在滑动变阻器金属杆右端接线柱,另一条导线接在电阻丝右端接线柱
(3)选用k、a、R1和R2表示待测电源的电动势E和内阻r的表达式E=___,r=__,代入数值可得E和r的测量值。
某同学利用图(a)所示电路测量量程为2.5 V的电压表的内阻(内阻为数千欧姆),可供选择的器材有:电阻箱R(最大阻值99 999.9 Ω),滑动变阻器R1(最大阻值50 Ω),滑动变阻器R2(最大阻值5 kΩ),直流电源E(电动势3 V).开关1个,导线若干.
实验步骤如下
①按电路原理图(a)连接线路;
②将电阻箱阻值调节为0,将滑动变阻器的滑片移到与图(a)中最左端所对应的位置,闭合开关S;
③调节滑动变阻器,使电压表满偏;
④保持滑动变阻器滑片的位置不变,调节电阻箱阻值,使电压表的示数为2.00 V,记下电阻箱的阻值.
回答下列问题:
(1)试验中应选择滑动变阻器_______(填“”或“”).
(2)根据图(a)所示电路将图(b)中实物图连线 .
(3)实验步骤④中记录的电阻箱阻值为630.0 Ω,若认为调节电阻箱时滑动变阻器上的分压不变,计算可得电压表的内阻为_______Ω(结果保留到个位).