如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,两板间电势差UAB=300V。一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直击中放置于中心线上的荧光屏EF。求:(静电力常量k=9×109N·m2/C2)
(1)假设该带电粒子从界面MN飞出时速度方向的反向延长线交两平行金属板间电场中心线与C点,且R点到C的距离为x,试证明x=;
(2)粒子穿过界面PS时距中心线RO的距离;
(3)点电荷的电量Q.
如图所示为利用电磁作用输送非导电液体装置的示意图.一边长为L、截面为正方形的塑料管道水平放置,其右端面上有一截面积为A的小喷口,喷口离地的高度为h.管道中有一绝缘活塞.在活塞的中部和上部分别嵌有两根金属棒a,b,其中棒b的两端与一电压表相连,整个装置放在竖直向上的匀强磁场中.当棒a中通有垂直纸面向里的恒定电流I时,活塞向右匀速推动液体从喷口水平射出,液体落地点离喷口的水平距离为S.若液体的密度为,不计所有阻力,求:
(1)活塞移动的速度;
(2)该装置的功率;
(3)磁感应强度B的大小;
(4)若在实际使用中发现电压表的读数变小,试分析其可能的原因.
S为电子源,它只能在如图所示纸面上的360°范围内发射速率相同、质量为m、电量为e的电子,MN是一块竖直挡板,与S的水平距离OS=L,挡板左侧充满垂直纸面向里的匀强磁场,磁感强度为B。
(l)要使S发射的电子能到达挡板,则发射电子的速度至少多大?
(2)若S发射电子的速度为时,挡板被电子击中范围多大?(要求指明S在哪个范围内发射的电子可以击中挡板,并在图中画出能击中挡板距O上下最远的电子的运动轨道)
如图所示,一半径为R的绝缘圆筒中有沿轴线方向的匀强磁场,磁感应强度为B,一质量为m,带电荷量为q的正粒子(不计重力)以速度为v从筒壁的A孔沿半径方向进入筒内,设粒子和筒壁的碰撞无电荷量和能量的损失,那么要使粒子与筒壁连续碰撞,绕筒壁一周后恰好又从A孔射出。问:
(1)磁感应强度B的大小必须满足什么条件?
(2)粒子在筒中运动的时间为多少?
如图所示,半径R=10cm的圆形匀强磁场区域边界跟y轴相切于坐标系原点o,磁感强度B=0.332T,方向垂直于纸面向里.在O处有一放射源,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.64×10-27kg,电量q=3.2×10-19C.求:
(1)画出α粒子通过磁场空间做圆运动的圆心点轨迹,并说明作图的依据.
(2)求出α粒子通过磁场空间的最大偏转角.
(3)再以过O点并垂直于纸面的直线为轴旋转磁场区域,能使穿过磁场区且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场区的直径OA至少应转过多大角度?
如图所示,直线MN上方有平行于纸面且与MN成45°斜向下的匀强电场,MN下方有垂直于纸面向里的匀强磁场。一带正电的粒子以速度v从MN线上的O点垂直电场和磁场方向射入磁场。粒子第一次到MN边界线,并从P点进入电场。已知粒子带电量为q,质量为m,O、P之间的距离为L,匀强电场强度为E,不计粒子的重力。求:
(1)磁感应强度B;
(2)粒子从O点开始到第四次到达MN边界线的总时间t。