如图甲所示,间距为d、垂直于纸面的两平行板P、Q间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示。t=0时刻,一质量为m、带电荷量为+q的粒子(不计重力),以初速度由Q板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当和取某些特定值时,可使时刻入射的粒子经时间恰能垂直打在P板上(不考虑粒子反弹)。上述为已知量。
(1)若 ,求;
(2)若,求粒子在磁场中运动时加速度的大小;
(3)若,为使粒子仍能垂直打在P板上,求。
如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为L.一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域.并再次通过A点,此时速度方向与y轴正方向成锐角.不计重力作用.试求:
(1)粒子经过C点速度的大小和方向;
(2)磁感应强度的大小B.
甲所示,在光滑绝缘的水平桌面上建立一xoy坐标系,平面处在周期性变化的电场和磁场中,电场和磁场的变化规律如图乙所示(规定沿+y方向为电场强度的正方向,竖直向下为磁感应强度的正方向).在t=0时刻,一质量为10g、电荷量为0.1C的带电金属小球自坐标原点O处,以v0=2m/s的速度沿x轴正方向射出.已知E0=0.2N/C、B0=0.2T.求:
(1)t=1s末速度的大小和方向;
(2)1s~2s内,金属小球在磁场中做圆周运动的半径和周期;
(3)(2n-1)s~2ns(n=1,2,3,……)内金属小球运动至离x轴最远点的位置坐标.
如图所示,质量为m,电荷量为e的电子从坐标原点O处沿xOy平面射入第一象限内,射入时的速度方向不同,但大小均为v0.现在某一区域内加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度大小为B,若这些电子穿过磁场后都能垂直地射到与y轴平行的荧光屏MN上,求:
(1)电子从y轴穿过的范围;
(2)荧光屏上光斑的长度;
(3)所加磁场范围的最小面积.
如图所示,在0≤x≤a、0≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:
(1)速度的大小;
(2)速度方向与y轴正方向夹角的正弦.
核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置).如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内.设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×107C/kg,中空区域内带电粒子具有各个方向的速度.求:
(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度.
(2)所有粒子不能穿越磁场的最大速度