如图,AB是位于竖直平面内、半径=0.5 m的1/4圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数=0.05,取g=10 m/s2,求:
(1)小滑块第一次经过圆弧形轨道最低点B时对B点的压力
(2)小滑块在水平轨道上通过的总路程
如图所示为两个完全相同的半球形玻璃砖的截面, ,半径大小为R,其中为两球心的连线,一细光束沿平行于的方向由左侧玻璃砖外表面的a点射入,已知a点到轴线的距离为,光束由左侧玻璃砖的d点射出、然后从右侧玻璃砖的e点射入,最后恰好在右侧玻璃砖内表面的f点发生全反射,忽略光束在各面的反射,已知两玻璃砖的折射率均为。求:
(i)光束在d点的折射角;
(ii)e点到轴线的距离。
一列简谐横波沿x轴正方向传播,t=0时刻的波形如图所示,此时波刚好传播到x=5m处的M点,从此时起经过0.1s,平衡位置在x=1.5m处的质点第一次回到平衡位置。则下列判断正确的是( )
A.t=0时刻,x=1m处的质点P正沿y轴负方向运动
B.从t=0时刻开始,经过0.2s质点P传播到x=2m处
C.这列波的传播速度大小为5m/s
D.质点Q开始振动的方向沿y轴正方向
E.从0时刻到t=5s时,质点Q运动的路程为2m
如图所示,可沿缸壁自由滑动的活塞(厚度不计)把导热性能良好的竖直圆筒形气缸内的理想气体分成两部分。活塞静止时与气缸底部的间距为气缸高度h的,A部分气体的压强等于外界大气压强。已知B部分气体的质量为m,活塞的横截面积为S,质量为,其中g为重力加速度大小。整个系统始终处于恒温状态,现将气缸底部的阀门K打开,将B部分气体缓慢放出一些,当活塞下移时关闭阀门K。求关闭阀门时。
(i)B部分气体的压强;
(ii)B部分气体剩下的质量。
下列说法中正确的是( )
A.温度越高布朗运动越剧烈,说明液体分子的热运动与温度有关
B.对于一定质量的理想气体,温度升高,气体内能一定增大
C.气体总是充满容器,说明气体分子间只存在斥力
D.热量可以从低温物体传递到高温物体
E.物体的内能增加,温度一定升高
如图所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,在边长为2L的正方形abcd区域(包括边界)内有方向垂直纸面向外的匀强磁场.一电子从y轴上的A(0,)点以大小为v0的速度沿x轴正方向射入电场,已知电子的质量为m、电荷量为e,正方形abcd的中心坐标为(3L,0),且ab边与x轴平行,匀强电场的电场强度大小.
(1)求电子进入磁场时的位置坐标;
(2)若要使电子在磁场中从ab边射出,求匀强磁场的磁感应强度大小B满足的条件.