如图(a)所示,A、B为两块平行金属板,极板间电压为UAB=1125V,板中央有小孔O和O′.现有足够多的电子源源不断地从小孔O由静止进入A、B之间.在B板右侧,平行金属板M、N长L1=4×10-2m,板间距离d=4×10-3m,在距离M、N右侧边缘L2=0.1m处有一荧光屏P,当M、N之间未加电压时电子沿M板的下边沿穿过,打在荧光屏上的O″并发出荧光.现给金属板M、N之间加一个如图(b)所示的变化电压u1,除了t=0.4n s (n =1,2,3…)时刻, N板电势均高于M板.已知电子质量为me=9.0×10−31kg,电量为e=1.6×10-19C.
(1)每个电子从B板上的小孔O′射出时的速度多大?
(2)打在荧光屏上的电子范围是多少?
(3)打在荧光屏上的电子的最大动能是多少?
如图所示为研究电子枪中电子在恒定电场中运动的简化模型示意图.在xOy 平面的第一象限,存在以x轴、y轴及双曲线的一段(0≤x≤L,0≤y≤L)为边界的匀强电场区域I,电场强度为E;在第二象限存在以(-2L≤x≤0,0≤y≤L)为边界的匀强电场区域Ⅱ.一电子(电荷量大小为e,质量为m,不计重力)从电场I的边界B点处由静止释放,恰好从N点离开电场区域Ⅱ.求:
(1)电子通过C点时的速度大小;
(2)电场区域Ⅱ中的电场强度的大小;
(3)试证明:从AB曲线上的任一位置由静止释放的电子都能从N点离开电场.
如图所示,在光滑的水平桌面上,水平放置的粗糙直线轨道AB与水平放置的光滑圆弧轨道BCD相切于B点,整个轨道位于水平桌面内,圆心角∠BOC=37°,线段OC垂直于OD,圆弧轨道半径为R,直线轨道AB长为L=5R。整个轨道处于电场强度为E的匀强电场中,电场强度方向平行于水平桌面所在的平面且垂直于直线OD。现有一个质量为m、带电荷量为+q的小物块P从A点无初速度释放,小物块P与AB之间的动摩擦因数μ=0.25,取sin 37°=0.6,cos 37°=0.8,忽略空气阻力。求:
(1)小物块第一次通过C点时对轨道的压力大小;
(2)小物块第一次通过D点后离开D点的最大距离;
(3)小物块在直线轨道AB上运动的总路程。
如图所示,在足够高的竖版绝缘挡板上A点,以水平速度向左抛出一个质为m,电街最为+q的小球,由于空间存在水平向右、场强大小为E的匀强电场.小球抛出后经过一段时间将再次到达墙面上的B点,重力加速度为g.求在此过程中:
(1)小球水平方向的速度为零时到板面的距离;
(2)板上A、B两点间的距离;
(3)小球的最小速度.
如图,AB是位于竖直平面内、半径=0.5 m的1/4圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数=0.05,取g=10 m/s2,求:
(1)小滑块第一次经过圆弧形轨道最低点B时对B点的压力
(2)小滑块在水平轨道上通过的总路程
如图所示为两个完全相同的半球形玻璃砖的截面, ,半径大小为R,其中为两球心的连线,一细光束沿平行于的方向由左侧玻璃砖外表面的a点射入,已知a点到轴线的距离为,光束由左侧玻璃砖的d点射出、然后从右侧玻璃砖的e点射入,最后恰好在右侧玻璃砖内表面的f点发生全反射,忽略光束在各面的反射,已知两玻璃砖的折射率均为。求:
(i)光束在d点的折射角;
(ii)e点到轴线的距离。