如图所示,装有导电液的玻璃器皿放在上端为S极的蹄形磁铁的磁场中,器皿中心的圆柱形电极与电源负极相连,内壁边缘的圆环形电极与电源正极相连.电流方向与液体旋转方向(从上往下看)分别是( )
A.由边缘流向中心、顺时针旋转
B.由边缘流向中心、逆时针旋转
C.由中心流向边缘、顺时针旋转
D.由中心流向边缘、逆时针旋转
某一交流的方向每秒钟改变100次,则它的周期和频率分别是( )
A.0.01s和50Hz B.0.01s和100Hz C.0.02s和50Hz D.0.02s和100Hz
磁感应强度的单位是( )
A.特斯拉 B.韦伯 C.欧姆 D.安培
如图所示,在平面直角坐标系,xOy的平面内,有一个半径为R,圆心坐标(0,-3R)的圆形区域,该区域内存在着磁感应强度为、方向垂直坐标平面向里的匀强磁场;有一对平行电极板垂直于x轴且关于y轴对称放置,极板AB、CD的长度和两板间距均为2R,极板的两个端点B和D位于x轴上,AB板带正电,CD板带负电。在的区域内有垂直于坐标平面向里的磁感应强度为(未知)的匀强磁场。现有一坐标在(R,-3R)的电子源能在坐标平面内向圆形区域磁场内连续不断发射速率均为、方向与y轴正方形夹角为θ(θ可在0内变化)的电子。已知电子的电荷量大小为e,质量为m,不计电子重力及电子间的相互作用,两极板之间的电场看成匀强电场且忽略极板的边缘效应。电子若打在AB极板上则即刻被导走且不改变原电场分布;若不考虑电子经过第一、二象限的磁场后的后续运动。求:
(1)电子进入圆形磁场区域时的偏转半径;
(2)若从发射的电子能够经过原点O,则两极板间电压为多大?
(3)若,将两极板间的电压调整为第(1)问中电压的两倍(两极板极性不变),电子的发射方向不变,求电子从边界处的哪一位置离开磁场?
(4)若,两极板间的电压大小可以从0开始调节(两极板极性不变),则θ在哪个范围内发射进入的电子最终能够击中(3R,0)点?并求出这些电子在区域内运动的最长时间。(结果可用反三角函数表示,例如,则α可表示为arctan2)
如图所示,在倾角为的光滑斜面上存在两个磁感应强度均为B的匀强磁场区域。磁场Ⅰ的方向垂直于斜面向下,其上下边界与的间距为H。磁场H的方向垂直于斜面向上,其上边界与的间距为h。线有一质量为m、边长为L(h<L<H)、电阻为R的正方形线框由上方某处沿斜面由静止下滑,恰好能匀速进入磁场Ⅰ。已知当cd边刚要进入磁场Ⅱ的前一瞬间,线框的加速度大小为,不计空气阻力,求:
(1)cd边刚到达时的速度;
(2)cd边从运动到过程中,线框所产生的热量Q;
(3)当cd边刚进入磁场H时,线框的加速度大小。
如图所示,水平导体棒ab质量为m、长为L、电阻为,其两个端点分别搭接在竖直平行放置两光滑金属圆环上,两圆环半径均为r、电阻不计。阻值为R的电阻用导线与圆环相连接,理想交流电压表V接在阻两端。整个空间有磁感应强度大小为B、方向竖直向下的强磁场,导体棒ab在外力F作用下以角速度ω绕两圆的中心轴均速转动,产生正弦交流电,已知重力加速度为g。求:
(1)交流电压表的示数U;
(2)导体棒ab从圆环最低点运动圆周到与心等高点过程中,通过电阻R的电荷量;
(3)导体棒ab从圆环最低点运动圆周到圆最高点的过程中,外力F所做的功W。