如图所示,是一传送装置,其中AB段粗糙,AB段长为L=1m,动摩擦因数μ=0.5;BC、DEN段均可视为光滑,DEN是半径为r=0.5 m的半圆形轨道,其直径DN沿竖直方向,C位于DN竖直线上,CD间的距离恰能让小球自由通过.其中N点又与足够长的水平传送带的右端平滑对接,传送带以3m/s的速率沿顺时针方向匀速转动,小球与传送带之间的动摩擦因数也为0.5.左端竖直墙上固定有一轻质弹簧,现用一可视为质点的小球压缩弹簧至A点后由静止释放(小球和弹簧不粘连),小球刚好能沿圆弧DEN轨道滑下,而始终不脱离轨道.已知小球质量m=0.2kg ,重力加速度g 取10m/s2.试求:
(1)弹簧压缩至A点时所具有的弹性势能;
(2)小球第一次经过N点时的速度大小;
(3)小球在传送带上滑动的过程中,离N点的最远距离;
(4)小球第一次在传送带上向左滑动的过程中,小球与传送带之间因摩擦产生的热量.
如图所示,分别用恒力F1、F2先后将质量为m的物体由静止开始沿同一粗糙的固定斜面由底端推至顶端,两次所用时间相同,第一次力F1沿斜面向上,第二次力F2沿水平方向.则两个过程( )
A.物体动能的变化量相同
B.物体机械能变化量相同
C.物体克服摩擦力做的功相同
D.恒力F1、F2做功相同
如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为lkg的小球A和B,A、B球间用不可伸缩的轻质细绳相连.初始A、B均处于静止状态,已知:OA =3m.OB =4m.若A球在水平拉力F的作用下向右缓慢地移动1m(取g=10m/s2),该过程中拉力F、摩擦力f做功分别为W1和W2,则下列答案正确的是( )
A.W1= 6 J W2=-10 J
B.W1=14J W2=-4 J
C.W1= 6 J W2=-6 J
D.W1= 4 J W2=-2 J
如图所示,物体A的质量为m,A的上端连接一个轻弹簧,弹簧原长为L0,劲度系数为k,整个系统置于水平地面上,现将弹簧上端B缓慢地竖直向上提起,B点上移距离为L,此时物体A也已经离开地面,重力加速度为g,则下列说法中正确的是( )
A.提弹簧的力对系统做功为mgL
B.物体A的重力势能增加mgL
C.物体A的重力势能增加mg(L-L0)
D.物体A的重力势能增加
质量m=1kg的小球以8m/s2的加速度减速上升了1m,下列关于该过程的说法正确的是(取重力加速度g=10m/s2)( )
A. 小球的机械能减少了2J
B. 小球的动能减少了8J
C. 小球的重力势能增加了8J
D. 小球的机械能守恒
如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑。右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°.一根不可伸长、不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,线的两端分别系有可视为质点的小球m1和m2,且m1>m2.开始时m1恰在碗口水平直径右端A处,m2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直。当m1由静止释放运动到圆心O的正下方B点时细绳突然断开,不计细绳断开瞬间的能量损失。
(1)m1由静止释放运动到圆心O的正下方B点时m1和m2的速度大小之比
(2)求小球m2沿斜面上升的最大距离s;
(3)若已知细绳断开后小球m1沿碗的内侧上升的最大高度为,求两球质量之比。