美国宇航局利用开普勒太空望远镜发现了一个新的双星系统,命名为“开普勒”,该系统位于天鹅座内,距离地球大约5000光年。这一新的系统有一对互相围绕运行的恒星,运行周期为T,其中一颗大恒星的质量为M,另一颗小恒星质量只有大恒星质量的三分之一。已知引力常量为G,则下列判断正确的是
A. 两颗恒星的转动角速度之比为1:2
B. 两颗恒星的转动半径之比为1:1
C. 两颗恒星相距
D. 两颗恒星相距
双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( )
A. B. C. D.
2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋转的超大质量双黑洞系统,如图所示.这也是天文学家首次在正常星系中发现超大质量双黑洞.这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有十分重要的意义.若图中双黑洞的质量分别为M1和M2,它们以两者连线上的某一点为圆心做匀速圆周运动.根据所学知识,下列选项正确的是( )
A.双黑洞的角速度之比ω1∶ω2=M2∶M1
B.双黑洞的轨道半径之比r1∶r2=M2∶M1
C.双黑洞的线速度之比v1∶v2=M1∶M2
D.双黑洞的向心加速度之比a1∶a2=M2∶M1
两个靠近的天体称为双星,它们以两者连线上某点O为圆心做匀速圆周运动,其质量分别为m1、m2,如图所示,以下说法正确的是( )
A.线速度与质量成反比 B.线速度与质量成正比
C.向心力与质量的乘积成反比 D.轨道半径与质量成正比
如图所示是月亮女神、嫦娥号绕月亮做圆周运动时某时刻的图片,用、、、分别表示月亮女神和嫦娥号的轨道半径及周期,用表示月亮的半径.
()请用万有引力知识证明:它们遵循,其中是只与月球质量有关而与卫星无关的常量;
()再经多少时间两卫星第一次相距最远;
()请用嫦娥号所给的已知量,估测月球的平均密度.
假设太阳系内某行星和地球的公转轨道均为圆形,且在同一平面内,如图所示,半径较小的轨道是某行星公转的轨道,半径较大的轨道是地球公转的轨道.在地球上观测,发现该行星与太阳可呈现的视角(太阳与行星均看成质点,它们与眼睛连线的夹角)有最大值,并且最大视角的正弦值为16/25.则该行星的公转周期为多少年?