万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.
(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.
①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);
②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.
(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为Rs和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
设想我国宇航员随“嫦娥”号登月飞船绕月球飞行,飞船上备有以下实验仪器:A.计时表一只,B.弹簧测力计一把,C.已知质量为的物体一个,D.天平一台(附砝码一盒)在飞船贴近月球表面时可近似看成绕月做匀速圆周运动,宇航员测量出飞船在靠近月球表面的圆形轨道上绕行圈所用时间为,飞船的登月舱在月球上着陆后,遥控机器人利用所携带的仪器又进行第二次测量,科学家利用上述两次测量数据便可计算出月球的半径和质量。若已知引力常量为。
(1)简述机器人是如何进行第二次测量的;
(2)试利用测量数据(用符号表示)计算月球的半径和质量。
如图所示,如果把水星和金星绕太阳的运动视为匀速圆周运动,从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得( )
A.水星和金星绕太阳运动的周期之比
B.水星和金星的密度之比
C.水星和金星到太阳中心的距离之比
D.水星和金星绕太阳运动的向心加速度大小之比
若有一星球密度与地球密度相同,它表面的重力加速度是地球表面重力加速度的3倍,则该星球质量是地球质量的 ( )
A.27倍 B.3倍 C.0.5倍 D.9倍
已知地球质量是月球质量的倍,地球半径是月球半径的倍,下列结论正确的是( )
A.地球表面和月球表面的重力加速度的比值为
B.环绕地球表面和月球表面运行的卫星的速率的比值为
C.环绕地球表面和月球表面运行卫星的周期的比值为
D.环绕地球表面和月球表面运行卫星的角速度的比值为
探月工程三期飞行试验器于2014年10月24日2时在中国西昌卫星发射中心发射升空,最终进入距月球表面高为h的圆形工作轨道.设月球半径为R,月球表面的重力加速度为g,万有引力常量为G,则下列说法正确的是( )
A.飞行试验器在工作轨道上的加速度为
B.飞行试验器绕月球运行的周期为
C.飞行试验器在工作轨道上的绕行速度为
D.月球的平均密度为