有一个质量为m的小木块,由碗边滑向碗底,碗内表面是半径为R的圆弧,由于摩擦力的作用,木块运动的速率不变,则
A.它的加速度为零
B.它所受合力为零
C.它所受的合外力大小一定、方向改变
D.它的加速度大小恒定
做匀速圆周运动的物体,在运动过程中保持不变的物理量是( )
A.角速度 B.线速度 C.加速度 D.合外力
如图所示,质量为m1的球1与质量为m2的球2放置在“卫J2130向心力演示仪”上.该演示仪可以巧妙地将向心力转化为竖直方向的效果进行显示,左边立柱可显示球1所受的向心力F1的大小,右边立柱可显示球2所受的向心力F2的大小.皮带与轮A、轮B有多种组合方式,图示为其中的一种组合,此时连接皮带的两轮半径RA=RB.图中两球距离立柱转轴中心的距离rA=rB,下列说法正确的是( )
A.若m1>m2,撬动手柄,则立柱上应显示F1<F2
B.若m1=m2,仅将球1改放在N位置,撬动手柄,则立柱上应显示F1>F2
C.若m1=m2仅调整皮带位置使RA>RB,则立柱上应显示F1>F2
D.若m1=m2,既调整皮带位置使RA>RB,又将球1改放在N位置,则立柱上应显示F1>F2
向心力演示器如图所示.转动手柄1,可使变速塔轮2和3 以及长槽4和短槽5随之匀速转动.皮带分别套在塔轮2和3上的不同圆盘上,可使两个槽内的小球分别以几种不同的角速度做匀速圆周运动,小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂的杠杆使弹簧测力套筒7下降,从而露出标尺8,标尺8上露出的红白相间等分格子的多少可以显示出两个球所受向心力的大小.现分别将小球放在两边的槽内,为探究小球受到的向心力大小与半径的关系,下列做法正确的是
A.皮带分别套在塔轮2和3大小不同的圆盘上,用质量不同的钢球做实验
B.皮带分别套在塔轮2和3大小不同的圆盘上,用质量相同的钢球做实验
C.皮带分别套在塔轮2和3大小相同的圆盘上,用质量不同的钢球做实验
D.皮带分别套在塔轮2和3大小相同的圆盘上,用质量相同的钢球做实验
某探究小组用能够显示并调节转动频率的小电动机验证匀速圆周运动的向心力关系式。
(1)如图所示,把转动频率可调的小电动机固定在支架上,转轴竖直向下,将摇臂平台置于小电动机正下方的水平桌面上
(2)在转动轴正下方固定一不可伸长的细线,小电动机转轴与细线连接点记为O。细线另一端穿过小铁球的球心并固定
(3)启动电动机,记录电动机的转动频率f,当小球转动稳定时,将摇臂平台向上移动,无限接近转动的小球
(4)关闭电动机,测量O点到摇臂平台的高度h
(5)改变电动机的转动频率,重复上述实验。本实验______(选填“需要”或“不需要)测量小球的质量。请你根据所记录的O点到摇臂平台的高度h和小球的直径D,重力加速度为g,若所测物理量满足g=_____,则成立。(用所测物理量符号表示)
如图所示,是《用圆锥摆粗略验证向心力的表达式》的实验,细线下面悬挂一个钢球,细线上端固定。将画着几个同心圆的白纸置于水平桌面上,使钢球静止时恰好位于圆心。现设法使钢球沿纸上的某个圆周运动。实验步骤如下:
(1)用秒表记下钢球运动n圈的时间t。
(2)通过纸上的圆测出钢球做匀速圆周运动的半径r,并用天平测出钢球质量m。
(3)测出悬点到球心的竖直高度h,用上述测得的量分别表示钢球所需要向心力的表达式F1=_____________,钢球所受合力的表达式F2=_________。下面是一次实验得到的数据,代入上式计算结果F1=________N,F2=_________N,图中细线与竖直方向的夹角 比较小,可认为 。(g=9.80m/s2,π2≈9.86,计算结果保留三位小数)
m/kg | r/m | n/转 | t/s | h/m |
0.200 | 0.050 | 50 | 99.0 | 1.00 |
(4)在误差允许的范围内,可认为F1_______F2(填 “=”、“>” 、“<”),证明向心力的表达式正确。