如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离0.1m处有一质量为m=1kg的小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为μ=0.8(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为370,(已知:重力加速度g=10m/s2 ,sin37°=0.6,cos37°=0.8)
(1)若ω=1 rad/s,求当小物体通过圆盘最高点时所受摩擦力的大小;
(2)若ω=1 rad/s,求当小物体通过与圆心等高处时所受摩擦力的大小;
(3)求符合条件的ω的最大值.
如图所示,光滑直杆AB长为L,B端固定一根劲度系数为k原长为l0的轻弹簧,质量为m的小球套在光滑直杆上并与弹簧的上端连接,为过B点的竖直轴,杆与水平面间的夹角始终为θ.
(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a及小球速度最大时弹簧的压缩量;
(2)当小球随光滑直杆一起绕OO'轴匀速转动时,弹簧伸长量为,求匀速转动的角速度ω;
(3)若θ=30°,移去弹簧,当杆绕OO'轴以角速度匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,求小球离B点的距离L0.
在“用圆锥摆验证向心力的表达式”实验中,如图甲所示,细绳的悬点刚好与一竖直放置的刻度尺零刻度线对齐.将画着几个同心圆的白纸置于水平桌面上,使钢球静止时刚好位于圆心.用手带动钢球,调整白纸的位置,设法使球刚好沿纸上某个半径为r的圆做圆周运动,钢球的质量为m,重力加速度为g.
(1).用秒表记录运动n圈的总时间为t,那么小球做圆周运动需要的向心力表达式为Fn=__________.
(2).通过刻度尺测得小球运动轨道平面距悬点的高度为h,那么小球做圆周运动中外力提供的向心力表达式为F=__________;
(3).改变小球做圆周运动的半径,多次实验,得到如图乙所示的关系图象为一直线时,可以达到粗略验证向心力表达式的目的,该图线的斜率表达式为k=__________.
如图所示,光滑杆偏离竖直方向的夹角为α,杆以O为支点绕竖直线旋转,质量为m的小球套在杆上可沿杆滑动,当杆角速度为ω1时,小球旋转平面在A处,当杆角速度为ω2时,小球旋转平面在B处,设杆对小球的支持力在A、B处分别为FN1、FN2,则有( )
A.FN1=FN2 B.FN1>FN2 C.ω1<ω2 D.ω1>ω2
如图所示,M能在水平光滑杆上自由滑动,滑杆连架装在转盘上.M用绳跨过在圆心处的光滑滑轮与另一质量为m的物体相连.当转盘以角速度ω转动时,M离轴距离为r,且恰能保持稳定转动.当转盘转速增至原来的2倍,调整r使之达到新的稳定转动状态,则滑块M( )
A.所受向心力变为原来的4倍
B.线速度变为原来的
C.半径r变为原来的
D.M的角速度变为原来的
如图所示,图甲为“向心力演示器验证向心力公式”的实验示意图,图乙为俯视图.图中A、B槽分别与a、b轮同轴固定,且a、b轮半径相同.当a、b两轮在皮带的传动下匀速转动.
(1)两槽转动的角速度______.(选填“>”“=”或“<”=).
(2)现有两质量相同的钢球,①球放在A槽的边缘,②球放在B槽的边缘,它们到各自转轴的距离之比为.则钢球①、②的线速度之比为______;受到的向心力之比为______.