如图所示,ABCD为固定在竖直平面内的轨道,AB段平直倾斜且粗糙,BC段是光滑圆弧,对应的圆心角,半径为r,CD段水平粗糙,各段轨道均平滑连接,在D点右侧固定了一个圆弧挡板MN,圆弧半径为R,圆弧的圆心也在D点。倾斜轨道所在区域有场强大小为、方向垂直于斜轨向下的匀强电场。一个质量为m、电荷量为q的带正电小物块(视为质点)在倾斜轨道上的A点由静止释放,最终从D点水平抛出并击中挡板。已知A,B之间距离为2r,斜轨与小物块之的动摩擦因数为,设小物块的电荷量保持不变,重力加速度为g,,。求:
(1)小物块运动至圆轨道的C点时对轨道的压力大小;
(2)改变AB之间的距离和场强E的大小,使小物块每次都能从D点以不同的速度水平抛出并击中挡板的不同位置,求击中挡板时小物块动能的最小值。
LED灯是一块电致发光的半导体材料芯片,其优点是体积小、质量轻、耗电量低、使用寿命长、亮度高、热量低、绿色环保、安全可靠,我国已经在大力推行使用LED灯具了。某小组同学找到了几个图甲所示的LED灯泡,准备描绘LED灯泡的伏安特性曲线,所用器材如下:
A.LED灯泡:额定功率0.1W;
B.电压表V:量程0~5V,内阻约为100kΩ
C.电流表A:量程0~300mA,内阻约为10Ω
D.锂离子电池:电动势3.8V、内阻很小;
E.滑动变阻器R:0—50Ω,2A;
F.开关、导线若干。
(1)考虑到描绘LED灯泡的伏安特性时,灯泡两端电压应从零开始,同时又要尽量减小实验误差。下列电路中最恰当的一个是_________。
A. B.
C. D.
(2)选择好正确的电路进行实验,根据实验所测得的电压和电流,描绘出该LED灯泡的伏安特性曲线如图乙所示,由图线可知,LED灯泡两端电压在2.3V以下时几乎处于_________(选填“短路”或“断路”)状态,选LED灯泡的电阻随其两端电压的升高而_________(选填“增大”“减小”或“不变”)。
(3)由该LED灯泡的伏安特性曲线可知,若将该LED灯泡与题中所给电源和一阻值约为的电阻串联,则该LED灯泡的耗电功率为___________W(保留两位有效数字)。
某同学设计了如图所示的装置来探究加速度与力的关系。弹簧秤固定在一合适的木板上,桌面的右边缘固定一支表面光滑的铅笔以代替定滑轮,细绳的两端分别与弹簧秤的挂钩和矿泉水瓶连接。在桌面上画出两条平行线MN 、PQ,并测出间距d。开始时让木板置于MN处,现缓慢向瓶中加水,直到木板刚刚开始运动为止,记下弹簧秤的示数F0 ,以此表示滑动摩擦力的大小。再将木板放回原处并按住,继续向瓶中加水后,记下弹簧秤的示数F1,然后释放木板,并用秒表记下木板运动到P Q处的时间t。则:
(1)木板的加速度可以用d、t表示为a=_______ 。
(2)改变瓶中水的质量重复实验,确定加速度a与弹簧秤示数F1的关系。下列图像能表示该同学实验结果的是________ 。
(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是_______。
A.可以改变滑动摩擦力的大小
B.可以更方便地获取多组实验数据
C.可以比较精确地测出滑动摩擦力的大小
D.可以获得更大的加速度以提高实验精度
如图所示,电阻不计的两光滑平行导轨固定在绝缘水平面上,导轨间距为1m,导轨中部有一个直径也为1m的圆形匀强磁场区域,与两导轨相切于M、N两点,磁感应强度大小为1T、方向竖直向下,长度略大于1m的金属棒垂直导轨水平放置在磁场区域中,并与区域圆直径MN重合。金属棒的有效电阻为0.5Ω,一劲度系数为3N/m的水平轻质弹簧一端与金属棒中心相连,另一端固定在墙壁上,此时弹簧恰好处于原长.两导轨通过一阻值为1Ω的电阻与一电动势为4V、内阻为0.5Ω的电源相连,导轨电阻不计。若开关S闭合一段时间后,金属棒停在导轨上的位置,下列说法正确的是( )
A.金属棒停止的位置在MN的右侧
B.停止时,金属棒中的电流为4A
C.停止时,金属棒到MN的距离为0.4m
D.停止时,举报受到的安培力大小为2N
如图所示,足够长的小平板车B的质量为M,以水平速度v0向右在光滑水平面上运动,与此同时,质量为m的小物体A从车的右端以水平速度v0沿车的粗糙上表面向左运动.若物体与车面之间的动摩擦因数为μ,则在足够长的时间内( )
A. 若M>m,物体A对地向左的最大位移是
B. 若M<m,小车B对地向右的最大位移是
C. 无论M与m的大小关系如何,摩擦力对平板车的冲量均为mv0
D. 无论M与m的大小关系如何,摩擦力的作用时间均为
图中虚线a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面b上的电势为2 V.一电子经过a时的动能为10 eV,从a到d的过程中克服电场力所做的功为6 eV.下列说法正确的是
A.平面c上的电势为零
B.该电子可能到达不了平面f
C.该电子经过平面d时,其电势能为4 eV
D.该电子经过平面b时的速率是经过d时的2倍