如图所示,水平放置的导热气缸A和B底面积相同,长度分别为和,两气缸通过长度为的绝热管道连接;厚度不计的绝热活塞a、b可以无摩擦地移动,a的横截面积为b的两倍。开始时A、B内都封闭有压强为、温度为的空气,活塞a在气缸A最左端,活塞b在管道最左端。现向右缓慢推动活塞a,当活塞b恰好到管道最右端时,停止推动活塞a并将其固定,接着缓慢加热气缸B中的空气直到活塞b回到初始位置,求:
(1)活塞a向右移动的距离及此时A,B部份气体的压强;
(2)活塞b回到初始位置时气缸B中空气的温度。
下列说法正确的是________.
A. 固体可以分为晶体和非晶体两类,非晶体和多晶体都没有确定的几何形状
B. 给篮球打气时,会越来越费力,这说明分子间存在斥力
C. 布朗运动表明了分子越小,分子运动越剧烈
D. 在太空里的空间站中,自由飘浮的水滴呈球形,这是表面张力作用的结果
E. 水的饱和汽压与温度有关
如图所示,直角坐标系Oxy位于竖直平面内,x轴与绝缘的水平面重合,在y轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m2=8×10-3kg的不带电小物块静止在原点O,A点距O点L=0.045m,质量m1=1×10-3kg的带电小物块以初速度v0=0.5m/s从A点水平向右运动,在O点与m2发生正碰并把部分电量转移到m2上,碰撞后m2的速度为0.1m/s,此后不再考虑m1、m2间的库仑力.已知电场强度E=40N/C,小物块m1与水平面的动摩擦因数为μ=0.1,取g=10m/s2,求:
(1)碰后m1的速度;
(2)若碰后m2做匀速圆周运动且恰好通过P点,OP与x轴的夹角θ=30°,OP长为Lop=0.4m,求磁感应强度B的大小;
(3)其它条件不变,若改变磁场磁感应强度的大小为B/使m2能与m1再次相碰,求B/的大小?
如图甲,倾角α=的光滑斜面有一轻质弹簧下端固定在O点,上端可自由伸长到A点。在A点放一个物体,在力F的作用下向下缓慢压缩弹簧到B点(图中未画出),该过程中力F随压缩距离x的变化如图乙所示。重力加速度g取10m/s2,sin=0.6,cos=0.8,求:
(1)弹簧的最大弹性势能;
(2)在B点撤去力F,物体被弹回到A点时的速度。
某同学要用电阻箱和电压表测量某水果电池组的电动势和内阻,考虑到水果电池组的内阻较大,为了提高实验的精确度,需要测量电压表的内阻。实验器材中恰好有一块零刻度在中央的双电压表,该同学便充分利用这块电压表,设计了如图所示的实验电路,既能实现对该电压表的内阻的测量,又能利用该表完成水果电池组电动势和内阻的测量,他用到的实验器材有:
待测水果电池组(电动势约,内阻约)、双向电压表(量程为,内阻约为)、电阻箱()、滑动变阻器(),一个单刀双掷开关及若干导线。
(1)该同学按如图所示电路图连线后,首先测出了电压表的内阻。请完善测量电压表内阻的实验步骤:
①将的滑动触头滑至最左端,将拨向1位置,将电阻箱阻值调为0;
②调节的滑动触头,使电压表示数达到满偏;
③保持______不变,调节,使电压表的示数达到______;
④读出电阻箱的阻值,记为,则电压表的内阻______。
(2)若测得电压表内阻为,可分析此测量值应______(选填“大于”“等于”或“小于”)真实值。
(3)接下来测量水果电池组的电动势和内阻,实验步骤如下:
①将开关拨至______(选填“1”或“2”)位置,将的滑动触片移到最______端,不再移动;
②调节电阻箱的阻值,使电压表的示数达到一个合适值,记录下电压表的示数和电阻箱的阻值;
③重复步骤②,记录多组电压表的示数及对应的电阻箱的阻值。
(4)若将电阻箱与电压表并联后的阻值记录为,作出图象,则可消除系统误差,如图所示,其中纵截距为,斜率为,则电动势的表达式为______,内阻的表达式为______。
某实验小组用如图所示的实验装置测量物块与水平固定桌面之间的动摩擦因数。已知物块、遮光板和拉力传感器的总质量为M,重物质量为m,遮光板的宽度为d(d很小),遮光板与光电门之间的距离为L,重力加速度为g,细线恰伸直,重物由静止释放。
(1)在完成本实验时,下列操作或说法正确的是___________
A.拉力传感器的示数始终等于mg
B.细线必须平行于水平桌面
C.拉力传感器固定在重物上时误差更小
D.实验时不需要满足条件m<<M
(2)某次实验时,测出遮光板通过光电门所用的时间为△t,则此实验过程物块通过光电门的速度________;运动的加速度a=___________
(3)实验时,改变重物m的质量,多次实验,记录拉力传感器的示数F,计算物块的加速度a,根据实验数据画出a—F图象,图线与纵轴的交点为(0,-b),则物块与水平桌面间的动摩擦因数为_________