如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4kg的小物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2kg的小物块将弹簧缓慢压缩到C点释放,物块过B点后做匀变速运动,由B到D位移与时间的关系为x=6t-2t2,物块飞离桌面后恰好由P点沿切线进入圆轨道,g=10m/s2,不计空气阻力。求:
(1)BD间的距离;
(2)判断小物块m2能否沿圆轨道到达M点(要求写出判断过程);
(3)小物块m2由C点释放运动到D过程中克服摩擦力做的功。
如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向.现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地面时D的速度的大小是多少?已知重力加速度为g.
如图,点O、a、c在同一水平线上,c点在竖直细杆上.一橡皮筋一端固定在O点,水平伸直(无弹力)时,另一端恰好位于a点,在a点固定一光滑小圆环,橡皮筋穿过圆环与套在杆上的小球相连.已知b、c间距离小于c、d间距离,小球与杆间的动摩擦因数恒定,橡皮筋始终在弹性限度内,且其弹力跟伸长量成正比.小球从b点上方某处释放,第一次到达b、d两点时速度相等,则小球从b第一次运动到d的过程中( )
A.在c点速度最大
B.在c点下方某位置速度最大
C.重力对小球做的功一定大于小球克服摩擦力做的功
D.在b、d两点,摩擦力的瞬时功率大小相等
如图所示,将质量均为1kg厚度不计的两物块A、B用轻质弹簧相连接。第一次用手拿着A、B两物块,使得弹簧竖直并处于原长状态,此时物块B离地面的距离为H=5m,然后由静止同时释放A、B,B物块着地后速度立即变为零。第二次只用手托着B物块于H高处,A在弹簧弹力和重力作用下处于静止,将弹簧锁定,此时弹簧的弹性势能为12.5J,然后由静止释放A、B,B物块着地后速度立即变为零,同时弹簧锁定解除,在随后的过程中B物块恰能离开地面但不继续上升(g=10m/s2)。则下列正确的说法是( )
A.第一次释放A、B后,A上升至弹簧恢复原长时的速度v1=10m/s
B.第一次释放A、B后,B刚要离地时A的速度v2=5m/s
C.第二次释放A、B,在弹簧锁定解除后到B物块恰要离开地过程中A物块机械能守恒
D.第二次释放A、B,在弹簧锁定解除后到B物块恰要离开地过程中A物块先超重后失重
如图所示,竖直光滑杆固定不动,弹簧下端固定,将滑块向下压缩弹簧至离地高度h=0.1m处,滑块与弹簧不拴接,现由静止释放滑块,通过传感器测量到滑块的速度和离地高度h,并作出其Ek—h图象,其中高度从0.2m上升到0.35m范围内图象为直线,其余部分为曲线,以地面为零势能面,g取10m/s2,由图象可知( )
A.小滑块的质量为0.2kg
B.弹簧最大弹性势能为0.7J
C.轻弹簧的初始压缩量为0.25m
D.小滑块的重力势能与弹簧的弹性势能总和最小为0.5J
如图所示,固定于地面、倾角为θ的光滑斜面上有一轻质弹簧,轻质弹簧一端与固定于斜面底端的挡板C连接,另一端与物块A连接,物块A上方放置有另一物块B,物块A、B质量均为m且不粘连,整个系统在沿斜面向下的恒力F作用下而处于静止状态。某一时刻将力F撤去,若在弹簧将A、B弹起过程中,A、B能够分离,则下列叙述正确的是( )
A.从力F撤去到A、B发生分离的过程中,弹簧及A、B物块所构成的系统机械能守恒
B.A、B被弹起过程中,A、B即将分离时,两物块速度达到最大
C.A、B刚分离瞬间,A的加速度大小为gsinθ
D.若斜面为粗糙斜面,则从力F撤去到A、B发生分离的过程中,弹簧减少的弹性势能一定大于A、B增加的机械能与系统摩擦生热之和