如图是小型电动打夯机的结构示意图,电动机带动质量为m=50kg的重锤(重锤可视为质点)绕转轴O匀速运动,重锤转动半径为R=0.5m。电动机连同打夯机底座的质量为M=25kg,重锤和转轴O之间连接杆的质量可以忽略不计,重力加速度g取10m/s2.求:
(1)重锤转动的角速度为多大时,才能使打夯机底座刚好离开地面?
(2)若重锤以上述的角速度转动,当打夯机的重锤通过最低位置时,打夯机对地面的压力为多大?
如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合。转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60∘.重力加速度大小为g.求:
(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;
(2)若ω=,此时小物块仍随陶罐一起转动且相对静止。求小物块受到的摩擦力的大小和方向。
如图所示,P点位于悬挂点正下方的地面上,质量m的小球用细线拴住,线长l,细线所受拉力达到2mg时就会被拉断.当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断,此时小球距水平地面的高度h,求
1)细线被拉断瞬间小球的速度大小?
2)小球落地点到P点的距离?
图甲是“研究平抛物体的运动”的实验装置图。
(1)实验前应对实验装置反复调节,直到斜槽末端切线_______。每次让小球从同一位置由静止释放,是为了每次平抛__________。
(2)图乙是正确实验取得的数据,其中O为抛出点,则此小球做平抛运动的初速度为__________m/s(g=9.8 m/s2)。
(3)在另一次实验中将白纸换成方格纸,每个格的边长 L=5 cm,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为_______m/s;B 点的竖直分速度为________m/s(g=10 m/s2)。(结果均保留两位有效数字)
为了探究质量一定时加速度与力的关系,一同学设计了如图所示的实验装置。其中M为带滑轮的小车的质量,m为砂和砂桶的质量。(滑轮质量不计)
(1)实验时,一定要进行的操作是______。
A.用天平测出砂和砂桶的质量
B.将带滑轮的长木板右端垫高,以平衡摩擦力
C.小车靠近打点计时器,先接通电源,再释放小车,打出一条纸带,同时记录弹簧测力计的示数
D.改变砂和砂桶的质量,打出几条纸带
E.为减小误差,实验中一定要保证砂和砂桶的质量m远小于小车的质量M
(2)该同学在实验中得到如图所示的一条纸带(两相邻计数点间还有两个点没有画出),已知打点计时器采用的是频率为50Hz的交流电,根据纸带可求出小车的加速度为______m/s2(结果保留两位有效数字)。
(3)以弹簧测力计的示数F为横坐标,加速度为纵坐标,画出的a-F图象是一条直线,图线与横坐标的夹角为θ,求得图线的斜率为k,则小车的质量为______。
A. B. C.k D.
如图所示,倾角为θ的斜面体固定在水平面上,两个可视为质点的小球甲和乙分别沿水平方向抛出,两球的初速度大小相等,已知甲的抛出点为斜面体的顶点,经过一段时间两球落在斜面上的A、B两点后不再反弹,落在斜面上的瞬间,小球乙的速度与斜面垂直.忽略空气的阻力,重力加速度为g.则下列选项正确的是( )
A.甲、乙两球在空中运动的时间之比为tan2 θ∶1
B.甲、乙两球下落的高度之比为4tan4 θ∶1
C.甲、乙两球的水平位移之比为tan θ∶1
D.甲、乙两球落在斜面上瞬间的速度与水平面夹角的正切值之比为2tan2 θ∶1