某双星系统中两个星体 A、B 的质量都是 m,且 A、B 相距 L,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T0,且 k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A、B 的连线中点.求:
(1)两个星体 A、B组成的双星系统周期理论值;
(2)星体C的质量.
宇航员驾驶宇宙飞船到达月球,他在月球表面做了一个实验:在离月球表面高度为h处,将一小球以初速度v0水平抛出,水平射程为x。已知月球的半径为R,万有引力常量为G。不考虑月球自转的影响。求:
(1)月球表面的重力加速度大小g0;
(2)月球的质量M;
(3)飞船在近月圆轨道绕月球做匀速圆周运动的速度v。
如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运行周期.
(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?
我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。量子卫星成功运行后,我国已首次实现了卫星和地面之间的量子通信,成功构建了天地体化的量子保密通信与科学实验体系。假设量子卫星轨道在赤道平面, 如图所示。已知量子卫星的轨道半径是地球半径的m倍,同步卫星的轨道半径是地球半径的n倍,图中P点是地球赤道上一点,求量子卫星的线速度与P点的线速度之比。
2017年10月16日,南京紫金山天文台对外发布一项重大发现,我国南极巡天望远镜追踪探测到首例引力波事件光学信号,关于引力波,早在1916年爱因斯坦基于广义相对论预言了其存在,1974年拉塞尔豪尔斯和约瑟夫泰勒发现豪尔斯-泰勒脉冲双星,这双星系统在相互公转时,由于不断发射引力波而失去能量,因此逐渐相互靠近,这现象为引力波的存在提供了首个间接证据,上述叙述中,若不考虑豪尔斯-泰勒脉冲双星质量的变化,则关于豪尔斯-泰勒脉冲双星的下列说法正确的是( )
A.脉冲双星逐渐靠近的过程中,它们相互公转的周期逐渐变小
B.脉冲双星逐渐靠近的过程中,它们相互公转的周期不变
C.脉冲双星逐渐靠近的过程中,它们各自做圆周运动的半径逐渐减小,但其比值保持不变
D.若测出脉冲双星相互公转的周期,就可以求出双星的总质量
据报道,目前我国正在研制“萤火二号”火星探测器。探测器升空后,先在近地轨道上以线速度v环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v′在火星表面附近环绕飞行。若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1:2,密度之比为5:7,设火星与地球表面重力加速度分别为g′和g,下列结论正确的是( )
A.g′:g=4:1
B.g′:g=5:14
C.v′:v=
D.v′:v=