下列四种情形中,与其余三种所涉及的光学原理不同的是( )
A. B.
C. D.
质量为m的登月器与航天飞机连接在一起,随航天飞机绕月球做半径为3R( R为月球半径)的圆周运动。当它们运行到轨道的A点时,登月器被弹离, 航天飞机速度变大,登月器速度变小且仍沿原方向运动,随后登月器沿椭圆登上月球表面的B点,在月球表面逗留一段时间后,经快速起动仍沿原椭圆轨道回到分离点A与航天飞机实现对接。若物体只受月球引力的作用,月球表面的重力加速度用g月表示,已知科学研究表明,天体在椭圆轨道上运行的周期的平方与轨道半长轴的立方成正比。求:
(1)月球的第一宇宙速度是多少?
(2)登月器与航天飞机一起在圆周轨道上绕月球运行的周期是多少?
(3)若登月器被弹射后,航天飞机的椭圆轨道长轴为8R,则为保证登月器能顺利返回A点,登月器可以在月球表面逗留的时间是多少?
一宇航员站在某星球表面上将一质量为m的物体挂在一弹簧上称量,静止时得到弹簧秤的读数为F,已知该星球的半径为R,引力常量为G.
(1)求该星球的质量;
(2)如果在该星球表面上将一物体水平抛出,要使抛出的物体不再落回星球,则抛出的水平速度至少多大(该星球没有空气)
如图所示,一光滑的半径为R=1.6m的半圆形轨道放在水平面上,一个质量为m=2Kg的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,(1)求小球在最高点的速度?
(2)则小球落地点C距A处多远?
(3)当小球在最高点速度v=10m/s时对最高点的压力是多少?(g=10m/s2)
如图所示,传送带与水平面的夹角θ=37°,并以v=10m/s的速率逆时针转动,在传送带的A端轻轻地放一小物体.若已知物体与传送带之间的动摩擦因数μ=0.5,传送带A端到B端的距离L=16m,则小物体从A端运动到B端所需的时间为多少?(g取10m/s2,sin 37°=0.6,cos 37°=0.8)
在做“研究平抛物体的运动”的实验时,通过描点法画出小球平抛运动轨迹,并求出平抛运动初速度。实验装置如图甲所示:
安装实验装置的过程中,斜槽末端的切线必须是水平的,这样做的目的是(______)
A.保证小球飞出时,初速度大小相同 B.保证小球运动的轨迹是同一条抛物线
C.保证小球落地时每次速度都相同 D.保证小球飞出时,初速度水平
关于这个实验,以下说法不正确的是(_______)
A.每次小球要从同一位置由静止释放
B.小球释放的初始位置越高越好
C.实验前要用重垂线检查坐标纸上的竖线是否竖直
D.小球的平抛运动要靠近但不接触木板
在实验中,为减少空气阻力对小球的影响,所以选择小球时,应选择下列的 (______)
A.塑料球 B.实心小木球 C.实心小铁球 D.以上三种球都可以
如图乙所示,某同学在描绘平抛运动轨迹时,忘记记下斜槽末端位置。图中A点为小球运动一段时间后的位置,他便以A点为坐标原点,建立了水平方向和竖直方向的坐标轴,则根据图像可知小球平抛运动的初速度大小为 _____。取