如图所示,圆盘半径为r=0.25m,一质量为m=0.2kg的木块放置在圆盘的边缘,随圆盘一起绕圆心O在水平面内做匀速圆周运动,圆盘转动的角速度为=2rad/s。取g=10m/s2,求:
(1)木块的线速度大小;
(2)若木块与玻璃板间的动摩擦因数=0.4,将角速度缓慢增大到多少时木块刚好要与圆盘发生滑动?(设最大静摩擦力大小与滑动摩擦力大小相等)
(3)在第(2)题所描述的过程中,圆盘对小木块所做的功为多少?
航天员在某一星球离表面h高度处,以初速度v0沿水平方向抛出一个小球,经过时间t后小球落到星球表面,已知该星球的半径为R,引力常量为G,星球自转可忽略,求:
(1)该星球表面重力加速度g的大小;
(2)该星球的质量;
(3)要使小球抛出后不再落回星球表面,初速度v至少为多大?
用如图甲所示的实验装置验证机械能守恒定律。实验所用的电源为学生电源,输出电压为6V的交流电和直流电两种。重物从高处由静止开始下落,打点计时器在纸带打出一系列的点,对点迹进行测量和相关计算,即可验证机械能守恒定律:
下面是该实验的操作步骤:
A.按照图示的装置安装器件
B.将打点计时器接到电源的“直流输出”上
C.用天平测出重物的质量
D.先释放悬挂纸带的夹子,然后接通电源打出一条纸带
E.测量纸带上某些点间的距离
F.根据测量的结果计算重物下落过程中减少的重力势能是否等于增加的动能
(1)其中没有必要进行的或者操作不当的步骤是___________(填字母序号);
(2)实验中得到的一条纸带如图乙所示。相邻计数点间的时间间隔为0.02s,则:
①纸带的________(选填“O”或“C”)端与重物相连;
②某同学从起点O到打下计数点B的过程中,计算出重物的动能增加量△Ek=________J,重力势能减少量△Ep=________J;(已知重物质量为1kg,g取9.8m/s2,结果保留两位有效数字)
(3)另一名同学用计算出B的动能,恰好与重力势能减少量△Ep相等,于是该同学得出结论“重物下落过程中机械能守恒”,试问该同学的做法是否合理?_____________。
用如图甲所示的实验装置来探究小球作圆周运动所需向心力的大小F与质量m、角速度和半径r之间的关系,转动手柄l使长槽4和短槽5分别随变速轮塔2、3匀速转动,槽内的球就做匀速圆周运动。横臂6的挡板对球的压力提供了向心力,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力筒7下降,从而露出标尺8,标尺上的红白相间的等分格显示出两个小球所受向心力的比值,小球有钢球、橡胶球两种规格:
(1)本实验采用的实验方法主要是_____________、转换法;在探究向心力的大小F与半径r的关系时,要保持__________相同;
A.和r B.和m C.m和r D.m和F
(2)如图乙所示是某次实验时的情景,这是在研究向心力的大小F与_______的关系。若图中标尺上红白相间的等分格显示出两个小球所受向心力的比值为1:4,运用圆周运动知识可以判断与皮带连接的变速轮塔对应的半径之比为____________。
如图所示为质量为m的汽车在水平路面上启动过程中的速度-时间图像,Oa段为过原点的倾斜直线,ab段表示以额定功率P行驶时的加速阶段,bc段是与ab段相切的水平直线,则下述说法正确的是:( )
A.在全过程中汽车所受摩擦力为
B.t1~t2时间内汽车牵引力做功为
C.t2时刻汽车牵引力及其功率都是最大值
D.利用题中所给物理量,无法求出0~t3时间内汽车的总位移
某卫星在发射过程中经过四次变轨进入同步轨道,如图所示为第四次变轨的示意图,卫星先沿椭圆轨道Ⅰ(A点为近地点,B点为远地点)飞行,后在B点实现变轨,进入同步轨道Ⅱ。则关于该卫星,下列说法中正确的是( )
A.在轨道Ⅱ上的运行周期比在轨道Ⅰ上小
B.在B点变轨时需要通过点火使卫星加速
C.在轨道Ⅱ上的机械能比在轨道Ⅰ上任意一点的机械能大
D.在轨道Ⅱ上经过B点时的加速度比在轨道Ⅰ上经过B点时大