如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
1.(1)求经过A、B、C三点的抛物线的解析式;
2.(2)当BE经过(1)中抛物线的顶点时,求CF的长;
3.(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.
如图1,在△ABC中,AB=BC=5,AC=6. △ECD是△ABC沿CB方向平移得到的,连结AE,AC和BE相交于点O.
1.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
【小题,2】(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?
已知关于x的一元二次方程,.
1.(1)若方程有实数根,试确定a,b之间的大小关系;
2.(2)若a∶b=2∶,且,求a,b的值;
3.(3)在(2)的条件下,二次函数的图象与x轴的交点为A、C(点A在点C的左侧),与y轴的交点为B,顶点为D.若点P(x,y)是四边形ABCD边上的点,试求3x-y的最大值.
如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.
1.(1)请在图4中画出拼接后符合条件的平行四边形;
2.(2)请在图2中,计算裁剪的角度(即∠ABM的度数).
某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l和图2.
1.(1)第四个月销量占总销量的百分比是_______;
2.(2)在图2中补全表示B品牌电视机月销量的折线图;
3.(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
如图,四边形ABCD是平行四边形,以AB为直径的
⊙O经过点D,E是⊙O上一点,且ÐAED=45°.
1. (1) 试判断CD与⊙O的位置关系,并证明你的结论;
2.(2) 若⊙O的半径为3,sinÐADE=,求AE的值.