已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是
A.点P在⊙O上 B.点P在⊙O内
C.点P在⊙O 外 D.无法确定
如图,点A、B、C都在上,若∠AOB=72°,则∠ACB的度数为
A.18° B.30° C.36° D.72°
已知 那么下列等式中成立的是
A. B. C. D.
如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
1.(1)求经过A、B、C三点的抛物线的解析式;
2.(2)当BE经过(1)中抛物线的顶点时,求CF的长;
3.(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.
如图1,在△ABC中,AB=BC=5,AC=6. △ECD是△ABC沿CB方向平移得到的,连结AE,AC和BE相交于点O.
1.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
【小题,2】(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?
已知关于x的一元二次方程,.
1.(1)若方程有实数根,试确定a,b之间的大小关系;
2.(2)若a∶b=2∶,且,求a,b的值;
3.(3)在(2)的条件下,二次函数的图象与x轴的交点为A、C(点A在点C的左侧),与y轴的交点为B,顶点为D.若点P(x,y)是四边形ABCD边上的点,试求3x-y的最大值.