掷两枚硬币,规定落地后,国徽朝上为正,国徽朝下为“反”,则会出现以下三种情况.
“正正” “反反”
“正反”
分别求出每种情况的概率.
(1)小刚做法:通过列表可知,每种情况都出现一次,因此各种情况发生的概率均占.
可能出现的情况 |
正正 |
正反 |
反反 |
概率 |
小敏的做法:
第一枚硬币的可能情况 第二枚硬币的可能情况 |
正 |
反 |
正 |
正正 |
反正 |
反 |
正反 |
反反 |
通过以上列表,小敏得出:“正正”的情况发生概率为.“正反”的情况发生的概率为,“反反”的情况发生的概率为.
(1)以上三种做法,你同意哪种,说明你的理由;
(2)用列表法求概率时要注意哪些?
质地均匀的骰子被抛起后自由落在桌面上,点数为“1”或“3”的概率是多少?
掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?
某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.
某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)