小明在课外阅读中对有关“自定义型题”有了一定的了解,他也尝试着自定义了“颠倒数”的概念:从左到右写下一个自然数,再把它按从右到左的顺序写一遍,如果两数位数相同,这样就得到了这个数的“颠倒数”,如348的颠倒数是843.
请你探究,解决下列问题:
(1)请直接写出2012的“颠倒数”为 。
(2)若数存在“颠倒数”,则它满足的条件是: 。
(3)能否找到一个数字填入空格,使下列由“颠倒数”构成的等式成立?
。请你用下列步骤探究:
设这个数字为,将转化为用含的代数式表示分别为 和 ;
列出满足条件的关于的方程: ;
解这个方程的:= ;
经检验,所求的值符合题意吗? (填“符合”或“不符合”)。
两条平行直线上各有个点,用这对点按如下的规则连结线段:①平行线之间的点连结线段时,可以有共同的端点,但不能有其他交点;②符合①要求的线段必须全部画出。图①展示了当时的情况,此时图中三角形的个数为0;图②展示时的一种情况,此时图中三角形的个数为2.
(1)当时,请在图③中画出使三角形个数最少的图形,此时图中三角形的个数为 个。
(2)试猜想:当有对点时,按上述规则画出的图形中,最少有多少个三角形?
(3)当时,按上述规则画出的图形中,最少有多少个三角形?
温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州运往南昌的机器为台。
(1)用的代数式来表示总运费(单位:元);
(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?
(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由。
如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后两点相距15个单位长度,已知动点A、B的速度比是1:4(速度单位:1单位长度/秒)。
(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒,原点恰好处在两个动点的正中间?
已知:,求的值。
解方程:(1);(2)