如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论.
观察下列各式及其验算过程:
验证:
验证:
(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;
(2)针对上述各式反映的规律,写出用(为任意自然数,且)表示的等式,并证明
已知函数y=(2m+1)x+m-3
(1)若函数图象经过原点,求m的值;
(2)若函数的图象平行直线y=3x-3,求m的值;
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为(元),节假日购票款为(元).,与x之间的函数图象如图8所示.
(1)观察图象可知:a= ;b= ;m= ;
(2)求、与x之间的函数关系式;
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1.
(1)求证:△ABE≌△CAD;
(2)求证:∠BPQ=60°;
(3)求AD的长.
如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.