如图,△ABC内接于半圆,AB为直径,设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.
求证:FD=FG.
如图1,抛物线y= -x2+x+3与x轴交于A.C两点,与y轴交于B点,与直线y=kx+b交于A.D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1.1.3.4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
已知抛物线的顶点(-1,-2)且图象经过(1,6),求此抛物线解析式.
(1)求该二次函数的解析式;
(2)当y>0时,x的取值范围.
如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.
(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.
“如皋是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过三个十字路口,每个十字路口有红.绿两色交通信号灯,他在某天上学途中遇到三个红灯的概率为多少?(画出树形图分析所有可能结果)
已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1<y2成立的的取值范围是 .