阅读材料:(本题8分)
例:说明代数式 的几何意义,并求它的最小值.
【解析】
,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,
只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
所以PA′+PB的最小值为线段A′B的长度.为此,构造直角
三角形A′CB,因为A′C=3,CB=3,所以A′B=,
即原式的最小值为。
根据以上阅读材料,解答下列问题:
(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)
(2)求代数式 的最小值
(本题12分) 如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.
(1)试探索四边形EGFH的形状,并说明理由;
(2)当点E运动到什么位置时,四边形EGFH是菱形?并说明理由;
(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并说明你的理由.
(本题8分)在平面直角坐标系xOy中,已知点P(3,4),点Q在x轴上,△PQO是等腰三角形,在图中标出满足条件的点Q位置,并写出其坐标.
(本题7分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.设每户家庭用水量为x立方米时,应交水费y元.
(1)当0≤x≤20时,y与x的函数关系式为 ;
当x>20时,y与x的函数关系式为 。
(2)小明家第二季度交纳水费的情况如下:
月份 |
四月份 |
五月份 |
六月份 |
交费金额 |
30元 |
34元 |
47.8元 |
小明家这个季度共用水多少立方米?
(本题8分)如图,已知菱形ABCD的对角线相交于O,延长AB至E,使BE=AB,连结CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
(本题6分)如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.