满分5 > 初中数学试题 >

如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,...

如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O的圆心O1从点A开始沿折线A—D—C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以满分5 manfen5.comcm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为ts.

(1)请求出⊙O2与腰CD相切时t的值;

(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?

 满分5 manfen5.com

 

(1)秒;(2)3秒 【解析】 试题分析:(1)先设⊙O2运动到E与CD相切,且切点是F;连接EF,并过E作EG∥BC,交CD于G,再过G作GH⊥BC于H,即可得到直角三角形EFG和矩形GEBH.由∠C=60°可得∠CGH=30°,即可得到∠FGE=60°.在Rt△EFG中,根据勾股定理可得EG的值,那么CH=BC-BH=BC-EG.在Rt△CGH中,利用60°的角的正切值可求出GH的值,即可求得结果; (2)因为0s<t≤3s,所以O1一定在AD上,连接O1O2.利用勾股定理可得到关于t的一元二次方程,解出即可. (1)如图所示,设点O2运动到点E处时,⊙O2与腰CD相切.过点E作EF⊥DC,垂足为F,则EF=4cm.作EG∥BC,交DC于G,作GH⊥BC,垂足为H. 由直角三角形GEF中,∠EGF+∠GEF=90°, 又∠EGF+∠CGH=90°, ∴∠GEF=∠CGH=30°, 设FG=xcm,则EG=2xcm,又EF=4cm, 根据勾股定理得:,解得, 则, 又在直角三角形CHG中,∠C=60°, ∴ 则EB=GH=CHtan60°= ∴秒; (2)由于0s<t≤3s,所以,点O1在边AD上.如图连接O1O2,则O1O2=6cm. 由勾股定理得, 解得,(不合题意,舍去). 答:经过3秒,⊙O1与⊙O2外切. 考点:本题考查的是切线的性质,勾股定理,矩形的判定和性质
复制答案
考点分析:
相关试题推荐

如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长?(结果保留π)

满分5 manfen5.com

 

查看答案

连云港市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。

(1)求平均每次下调的百分率。

(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

 

查看答案

如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=CF=8.

满分5 manfen5.com

(l)求∠BDF的度数;

(2)求AB的长.

 

查看答案

市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:

甲:1.70  1.65  1.68  1.69  1.72  1.73  1.68  1.67

乙:1.60  1.73  1.72  1.61  1.62  1.71  1.70  1.75

(1)甲、乙两名运动员的跳高平均成绩分别是多少?

(2)哪位运动员的成绩更为稳定?

(3)若预测,跳过1.65m就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m才能得冠军呢?

 

查看答案

阅读下列例题:解方程满分5 manfen5.com

(1)当满分5 manfen5.com时,原方程化为满分5 manfen5.com,解之得满分5 manfen5.com(不符题意,舍去)

(2)当满分5 manfen5.com时,原方程化为满分5 manfen5.com,解之得满分5 manfen5.com(不符题意,舍去)

所以原方程的解是满分5 manfen5.com

请参照例题解方程满分5 manfen5.com.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.