若,则( )
A. B. C. D.
已知直线与抛物线交于点A(1,),与轴交于点C.
(1)求抛物线的解析式和点C的坐标;
(2)把(1)中的抛物线向右平移2个单位,再向上平移个单位(>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆恰好以CQ为直径,求的值;
(3)如图,把抛物线向右平移2个单位,再向上平移个单位(>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值?若存在,请求出这个最小值和此时的值;若不存在,请说明理由.
如图,已知函数和函数的图象交于A、B两点,过点A作AE⊥轴于点E,若△AOE的面积为4.
(1)求反比例函数的解析式;
(2)求点A、B的坐标;
(3)P是坐标平面上的点,且以点B、A、E、P为顶点的四边形是平行四边形,直接写出满足条件的P点坐标.
如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
已知二次函数,是不为0的常数.
(1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点中的其中一个;
(2)如果该二次函数的顶点不在直线的右侧,求的取值范围.
某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,聪明的你也能算出这个大石球的半径吗?写出你的计算过程.