(2006•浙江)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=2
2-0
2,12=4
2-2
2,20=6
2-4
2,因此4,12,20都是“神秘数”
(1)28和2 012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?
考点分析:
相关试题推荐
(2006•长春)如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.
(1)求证:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.
查看答案
(2008•娄底)先化简再求值:
,其中a满足a
2-a=0.
查看答案
(2006•河南)如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是
.
查看答案
(2010•鞍山)如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为B(
,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是
.
查看答案
(2007•天水)如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在⊙O及半径OM、OP上,并且∠POM=45°,则AB的长为
.
查看答案