满分5 > 初中数学试题 >

(2006•沈阳)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条...

(2006•沈阳)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.
(1)求点C的坐标;
(2)如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为manfen5.com 满分网时,求直线CE的函数表达式.
manfen5.com 满分网
(1)首先在Rt△ACO中,根据∠CAO=30°解直角三角形可以得到OA,OC的长,然后就可以得到点C的坐标; (2)根据已知条件容易得到△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC; (3)过点E1作E1M⊥OC于点M,利用S△COE1=4和∠E1OM=60°可以求出点E1的坐标,然后利用待定系数法确定直线CE的解析式.此题有两种情况,分别是E在第二或四象限里. 【解析】 (1)∵在Rt△ACO中,∠CAO=30°,OA=4, ∴OC=2, ∴C点的坐标为(-2,0). (2)△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC. (3)如图1,过点E1作E1M⊥OC于点M. ∵S△COE1=CO•E1M=, ∴E1M=. ∵在Rt△E1MO中,∠E1OM=60°,则, ∴, ∴点E1的坐标为(). 设直线CE1的函数表达式为y=k1x+b1,则 , 解得. ∴. 同理,如图2所示,点E2的坐标为(). 设直线CE2的函数表达式为y=k2x+b2,则, 解得. ∴.
复制答案
考点分析:
相关试题推荐
(2006•武汉)(人教版)已知平面直角坐标系中,B(-3,0),A为y轴正半轴上一动点,半径为manfen5.com 满分网的⊙A交y轴于点G、H(点G在点H的上方),连接BG交⊙A于点C.
manfen5.com 满分网manfen5.com 满分网
(1)如图①,当⊙A与x轴相切时,求直线BG的解析式;
(2)如图②,若CG=2BC,求OA的长;
(3)如图③,D为半径AH上一点,且AD=1,过点D作⊙A的弦CE,连接GE并延长交x轴于点F,当⊙A与x轴相离时,给出下列结论:①manfen5.com 满分网的值不变;②OG•OF的值不变.其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值.
查看答案
(2006•肇庆)如图,已知点A的坐标为(1,3),点B的坐标为(3,1).
(1)写出一个图象经过A,B两点的函数表达式;
(2)指出该函数的两个性质.

manfen5.com 满分网 查看答案
(2006•永州)已知正比例函数y=kx经过点P.(如图所示)
(1)求这个正比例函数的解析式.
(2)该直线向上平移3个单位,求平移后所得直线的解析式.

manfen5.com 满分网 查看答案
(2006•河南)一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?
查看答案
(2006•雅安)已知函数y=-2x+6与函数y=3x-4.
(1)在同一平面直角坐标系内,画出这两个函数的图象;
(2)求这两个函数图象的交点坐标;
(3)根据图象回答,当x在什么范围内取值时,函数y=-2x+6的图象在函数y=3x-4的图象的上方?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.