满分5 > 初中数学试题 >

(2006•黔东南州)如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分...

(2006•黔东南州)如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直线的函数解析式;
(2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形;
(3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由.
manfen5.com 满分网
(1)因为△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0),所以可设OA所在直线的解析式为:y=k1x,把A(4,6)代入得到关于k1的方程,解之即可;可设AB所在直线的解析式为:y=k2x+b,把A(4,6)、B(6,0)代入得到关于k2、b的方程组,解之即可; (2)因为在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,所以可过A作AS⊥OB于S,交CD于T,利用DC∥EF,可得△ADC∽△AOB,利用相似三角形的对应边的比等于相似比,可得,由点的坐标可知OB=6,AS=6,所以AT=DC=TS=3,故可设D(x,3),利用D(x,3)在的图象上,求出x的值就求出了D的坐标;同样可设C点的坐标为(x,3),因为CD=3,结合D的横坐标可得到x-2=3,即x=5,就可求出C(5,3),根据CDEF是正方形,即可写出E、F的坐标. (3)因为DC∥PM∥HN,PN∥FC∥HM,可得,,MHNP是平行四边形,利用四边形EFCG是正方形,DC=CF,可得MP=NP,而MH⊥OB,PN⊥OB,所以四边形MHNP是正方形. 【解析】 (1)设OA所在直线的解析式为:y=k1x, 把A(4,6)代入得4k1=6,∴ ∴AO所在直线的解析式为:(2分) 设AB所在直线的解析式为:y=k2x+b, 把A(4,6)、B(6,0)代入得, 解得, ∴AB所在直线的解析式为:y=-3x+18.(4分) (2)过A作AS⊥OB于S,交CD于T. ∵DC∥EF, ∴△ADC∽△AOB, ∴. ∵A(4,6),B(6,0), ∴OB=6,AS=6,, ∴AT=DC=TS=3,故可设D(x,3), ∵D(x,3)在的图象上, ∴x=2,故D(2,3),(6分) 可设C点的坐标为(x,3) ∵CD=3, ∴x-2=3,即x=5, ∴C(5,3),(7分) 又∵是DE、CF都垂直于OB且DE=CF, ∴E、F两点的坐标分别为:E(2,0)、F(5,0).(8分) (3)四边形MHNP是矩形.(9分) ∵DC∥PM,PN∥FC ∴(10分) ∴. 又∵四边形EFCG是正方形,DC=CF. ∴MP=NP,而MH⊥OB,PN⊥OB, ∴四边形MHNP是正方形.(12分)
复制答案
考点分析:
相关试题推荐
(2006•三明)如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
manfen5.com 满分网
查看答案
(2006•台州)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)△OBC与△ABD全等吗?判断并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.

manfen5.com 满分网 查看答案
(2006•太原)如图:已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M,
(1)求a的值及AM的长;
(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标;
(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.

manfen5.com 满分网 查看答案
(2006•天门)直线l的解析式为y=manfen5.com 满分网x+8,与x轴、y轴分别交于A,B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒manfen5.com 满分网个单位沿x轴向左运动,同时⊙P的半径以每秒manfen5.com 满分网个单位变小,设⊙P的运动时间为t秒,且⊙P始终与直线l有交点,试求t的取值范围.

manfen5.com 满分网 查看答案
(2006•芜湖)如图,在平面直角坐标系中,以点M(0,manfen5.com 满分网)为圆心,以2manfen5.com 满分网长为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.
(1)求出CP所在直线的解析式;
(2)连接AC,请求△ACP的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.