满分5 > 初中数学试题 >

(2006•海淀区)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C...

(2006•海淀区)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺画出该圆弧所在圆的圆心M的位置;
(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上;
(3)在(2)的条件下,求证:直线CD是⊙M的切线.

manfen5.com 满分网
(1)题利用“两弦垂直平分线的交点为圆心”可确定圆心位置; (2)先根据A、B、C三点坐标,用待定系数法求出抛物线的解析式,然后将D点坐标代入抛物线的解析式中,即可判断出点D是否在抛物线的图象上; (3)由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角. (1)【解析】 如图1,点M即为所求; (2)【解析】 由A(0,4),可得小正方形的边长为1,从而B(4,4)、C(6,2) 设经过点A、B、C的抛物线的解析式为y=ax2+bx+4 依题意,解得 所以经过点A、B、C的抛物线的解析式为y=-x2+x+4 把点D(7,0)的横坐标x=7代入上述解析式,得 所以点D不在经过A、B、C的抛物线上; (3)证明:如图,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD ∴CE=2,ME=4,ED=1,MD=5 在Rt△CEM中,∠CEM=90° ∴MC2=ME2+CE2=42+22=20 在Rt△CED中,∠CED=90° ∴CD2=ED2+CE2=12+22=5 ∴MD2=MC2+CD2 ∴∠MCD=90° ∵MC为半径 ∴直线CD是⊙M的切线.
复制答案
考点分析:
相关试题推荐
(2006•茂名)已知:半径为1的⊙O1与x轴交于A、B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A、B两点,其顶点为F.
(1)求b、c的值及二次函数顶点F的坐标;
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.

manfen5.com 满分网 查看答案
(2006•南通)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.

manfen5.com 满分网 查看答案
(2006•三明)已知二次函数y=ax2+bx+c(a≠0)的图象与y轴相交于点(0,-3),并经过点(-2,5),它的对称轴是x=1,如图为函数图象的一部分.
(1)求函数解析式,写出函数图象的顶点坐标;
(2)在原题图上,画出函数图象的其余部分;
(3)如果点P(n,-2n)在上述抛物线上,求n的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2006•宁夏)在边长为6cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.
(1)在运动中,点E,F,G,H所形成的四边形EFGH为( )
A:平行四边形;B:矩形;C:菱形;D:正方形.

(2)四边形EFGH的面积s(cm2)随运动时间t(s)变化的图象大致是( )
manfen5.com 满分网
(3)写出四边形EFGH的面积S(cm2)关于运动时间t(s)变化的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?
查看答案
(2006•徐州)下表给出了代数式x2+bx+c与x的一些对应值:
     x … 0 1 2
 x2+bx+c … 3 -1  3
(1)请在表内的空格中填入适当的数;
(2)设y=x2+bx+c,则当x取何值时,y>0;
(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.