(2006•湛江)已知抛物线y=ax
2+bx+2与x轴相交于点A(x
1,0),B(x
2,0)(x
1<x
2),且x
1,x
2是方程x
2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
(2006•张家界)在平面直角坐标系内有两点A(-2,0),B(
,0),CB所在直线为y=2x+b,
(1)求b与C的坐标;
(2)连接AC,求证:△AOC∽△COB;
(3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式;
(4)在抛物线上是否存在一点P(不与C重合),使得S
△ABP=S
△ABC?若存在,请求出P点坐标;若不存在,请说明理由.
查看答案
(2006•重庆)如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC
1D
1和△BC
2D
2两个三角形(如图所示).将纸片△AC
1D
1沿直线D
2B(AB)方向平移(点A,D
1,D
2,B始终在同一直线上),当点D
1于点B重合时,停止平移.在平移过程中,C
1D
1与BC
2交于点E,AC
1与C
2D
2、BC
2分别交于点F、P.
(1)当△AC
1D
1平移到如图3所示的位置时,猜想图中的D
1E与D
2F的数量关系,并证明你的猜想;
(2)设平移距离D
2D
1为x,△AC
1D
1与△BC
2D
2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
S
△ABC;若不存在,请说明理由.
查看答案
(2006•重庆)已知:m、n是方程x
2-6x+5=0的两个实数根,且m<n,抛物线y=-x
2+bx+c的图象经过点
A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
(2006•舟山)如图,已知抛物线y=ax
2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.
查看答案
(2006•株洲)如图:已知抛物线y=
x
2+
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
DF.试探究此时点M是否在抛物线上,请说明理由.
查看答案