满分5 > 初中数学试题 >

(2006•武汉)(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴...

(2006•武汉)(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-manfen5.com 满分网)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,请说明理由.
(1)令y=0,即x2-(m+1)x+m=0,根据一元二次方程根与系数的关系及x12+x22=10,可求出m的值,再根据图象与y轴正半轴于点C,可求出函数的解析式; (2)根据题意,设出一次函数解析式y=kx-,若能求出比例系数,则可证明此直线存在. 【解析】 (1)因为x12+x22=10, 所以(x1+x2)2-2x1x2=10,根据根与系数的关系,(m+1)2-2m=10, 所以m=3,m=-3, 又因为点C在y轴的正半轴上, ∴m=3, ∴所求抛物线的解析式为:y=x2-4x+3; (2)过点D(0,-)的直线与抛物线交于M(XM,YM)、N(XN,YN)两点,与x轴交于点E,使得M、N两点关于点E对称. 设直线MN的解析式为:y=kx-, 则有:YM+YN=0,(6分) 由, x2-4x+3=kx-, 移项后合并同类项得x2-(k+4)x+=0, ∴xM+xN=4+k. ∴yM+yN=kxM-+kxN-=k(xM+xN)-5=0, ∴yM+yN=k(xM+xN)=5, 即k(k+4)-5=0, ∴k=1或k=-5. 当k=-5时,方程x2-(k+4)x+=0的判别式△<0,直线MN与抛物线无交点, ∴k=1, ∴直线MN的解析式为y=x-, ∴此时直线过一、三、四象限,与抛物线有交点; ∴存在过点D(0,)的直线与抛物线于M,N两点,与x轴交于点E.使得M、N两点关于点E对称.
复制答案
考点分析:
相关试题推荐
(2006•西岗区)已知抛物线y=manfen5.com 满分网x2+bx+c经过点(1,-1)和C(0,-1),且与x轴交于A、B两点(A在B左边),直manfen5.com 满分网线x=m(m>0)与x轴交于点D.
(1)求抛物线的解析式;
(2)在第一象限内,直线x上是否存在点P,使得以P、B、D为顶点的三角形与△OBC全等?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的情况下,过点P作x轴的平行线交抛物线于点Q,四边形AOPQ能否为平行四边形?若能,求Q点坐标;若不能,说明理由.
查看答案
(2006•厦门)如图1,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…
已知A(0,0),B(3,0),C(2,2).
manfen5.com 满分网
(1)求这一系列三角形趋向于一个点M的坐标;
(2)如图2,分别求出经过A,B,C三点的抛物线解析式和经过A1,B1,C1三点的抛物线解析式;
(3)设两抛物线的交点分别为E、F,连接EF、EC1、FC1、EC2、FC2、C1C2,问:C2与△EC1F的关系是什么?
(4)如图3,问:A,A2,C,C2四点可不可能在同一条抛物线上,试说明理由.
查看答案
(2006•厦门)已知抛物线y=ax2+b(a>0,b>0),函数y=b|x|
问:(1)如图,当抛物线y=ax2+b与函数y=b|x|相切于AB两点时,a、b满足的关系;
(2)满足(1)题条件,则三角形AOB的面积为多少?
(3)满足条件(2),则三角形AOB的内心与抛物线的最低点间的距离为多少?
(4)若不等式ax2+b>b|x|在实数范围内恒成立,则a、b满足什么关系?

manfen5.com 满分网 查看答案
(2006•厦门)已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求manfen5.com 满分网的最大值.
查看答案
(2006•湘潭)已知:如图,抛物线y=-manfen5.com 满分网的图象与x轴分别交于A,B两点,与y轴交于C点,⊙M经过原点O及点A、C,点D是劣弧manfen5.com 满分网上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.