满分5 > 初中数学试题 >

(2006•潍坊)已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx...

(2006•潍坊)已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?

manfen5.com 满分网
(1)已知了一次函数的图象经过A点,可将A点的坐标代入一次函数中,即可求出一次函数的解析式. 由于抛物线的顶点为原点,因此可设其解析式为y=ax2,直接将A点的坐标代入抛物线中即可求出抛物线的解析式. (2)求直线与圆的位置关系需知道圆心到直线的距离和圆的半径长.由于直线l平行于x轴,因此圆心到直线l的距离为1.因此只需求出圆的半径,也就是求AB的长,根据(1)中两函数的解析式即可求出B点的坐标,根据A、B两点的坐标即可求出AB的长.然后判定圆的半径与1的大小关系即可. (3)先设出平移后抛物线的解析式,不难得出平移后抛物线的对称轴为x=2.因此过F,M,N三点的圆的圆心必在直线x=2上,要使圆的面积最小,那么圆心到F点的距离也要最小(设圆心为C),即F,C两点的纵坐标相同,因此圆的半径就是2.C点的坐标为(2,1)(可根据一次函数的解析式求出F点的坐标).可设出平移后的抛物线的解析式,表示出MN的长,如果设对称轴与x轴的交点为E,那么可表示出ME的长,然后在直角三角形MEC中根据勾股定理即可确定平移的距离.即t的值.(也可根据C点的坐标求出M,N点的坐标,然后用待定系数法求出平移后的抛物线的解析式,经过比较即可得出平移的距离,即t的值). 【解析】 (1)把A(-4,4)代入y=kx+1 得k=-, ∴一次函数的解析式为y=-x+1; ∵二次函数图象的顶点在原点,对称轴为y轴, ∴设二次函数解析式为y=ax2, 把A(-4,4)代入y=ax2 得a=, ∴二次函数解析式为y=x2. (2)由 解得或, ∴, 过A,B点分别作直线l的垂线,垂足为A',B', 则AA′=4+1=5,BB′=+1=. ∴直角梯形AA'B'B的中位线长为, 过B作BH垂直于直线AA'于点H, 则BH=A'B'=5,, ∴, ∴AB的长等于AB中点到直线l的距离的2倍, ∴以AB为直径的圆与直线l相切. (3)平移后二次函数解析式为y=(x-2)2-t, 令y=0,得(x-2)2-t=0,x1=2-2,x2=2+2, ∵过F,M,N三点的圆的圆心一定在平移后抛物线的对称轴上,点C为定点,B要使圆面积最小,圆半径应等于点F到直线x=2的距离, 此时,半径为2,面积为4π, 设圆心为C,MN中点为E,连CE,CM,则CE=1, 在△CEM中,ME=, ∴MN=2,而MN=|x2-x1|=4, ∴t=, ∴当t=时,过F,M,N三点的圆面积最小,最小面积为4π.
复制答案
考点分析:
相关试题推荐
(2006•乌兰察布)如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
(2006•无锡)已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N.
(1)设点P到x轴的距离为2,试求直线l的函数关系式;
(2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式.
查看答案
(2006•梧州)在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求这个抛物线的解析式;
(2)在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆与x轴相切,求此圆的直径;
(3)在抛物线的对称轴上是否存在一点P,使点P到B,C两点间的距离之差最大?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•武汉)(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-manfen5.com 满分网)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,请说明理由.
查看答案
(2006•西岗区)已知抛物线y=manfen5.com 满分网x2+bx+c经过点(1,-1)和C(0,-1),且与x轴交于A、B两点(A在B左边),直manfen5.com 满分网线x=m(m>0)与x轴交于点D.
(1)求抛物线的解析式;
(2)在第一象限内,直线x上是否存在点P,使得以P、B、D为顶点的三角形与△OBC全等?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的情况下,过点P作x轴的平行线交抛物线于点Q,四边形AOPQ能否为平行四边形?若能,求Q点坐标;若不能,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.