(2006•龙岩)如图,已知抛物线y=-
x
2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-
x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.
考点分析:
相关试题推荐
(2006•娄底)如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB′C=
.
(1)求出B′点的坐标;
(2)求折痕CE所在直线的解析式;
(3)作B′G∥AB交CE于G,已知抛物线y=
x
2-
通过G点,以O为圆心OG的长为半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标.
查看答案
(2006•泸州)如图,已知二次函数y=(1-m)x
2+4x-3的图象与x轴交于点A和B,与y轴交于点C.
(1)求点C的坐标;
(2)若点A的坐标为(1,0),求二次函数的解析式;
(3)在(2)的条件下,在y轴上是否存在点P,使以P、O、B为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
(2006•旅顺口区)已知抛物线y=x
2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax
2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-
个单位长度,试探索问题(2).
查看答案
(2006•旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.
查看答案
(2006•眉山)如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P
1,过P
1作P
1E⊥x轴,垂足为E,设四边形BCEP
1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.
查看答案