满分5 > 初中数学试题 >

(2006•鄂州)如图,直线y=-+8与x轴、y轴分别交于点A和B,M是OB上的...

(2006•鄂州)如图,直线y=-manfen5.com 满分网+8与x轴、y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处.
(1)试确定直线AM的函数关系式;
(2)求过A、B、M三点的抛物线的函数关系式.

manfen5.com 满分网
(1)已知直线y=+8与x、y轴分别交于A、B,又因为点B恰好落在B′处,故可知△ABM≌△AMB′.令x、y为0求出A、B的坐标.设AM的函数关系式为y=ax+b即可. (2)设过A、B、M三点的抛物线的函数关系式为y=ax2+bx+c.根据(1)把A、B、M三点的坐标代入可得关系式. 【解析】 (1)设OM=x, ∵直线y=-+8与x轴、y轴分别交于点A和B, 当x=0时,y=8,y=0时,x=6, ∴A(6,0),B(0,8), ∴AB=10,B′O=10-6=4, ∴BM=8-x, 在Rt△B′OM中,根据勾股定理得到x2+42=(8-x)2, ∴x=3, ∴M(0,3), 设直线AM的解析式为y=ax+b, ∴, 解得a=-,b=3 ∴直线AM:y=-x+3; (2)令x=0,可得点B坐标为(0,8) ∴AB==,则点B′坐标为(3-,0)而点M坐标为(0,3) 设过A、B、M三点的抛物线的函数关系式为y=ax2+bx+c,将三点代入可得 y=-x2+x+3.
复制答案
考点分析:
相关试题推荐
(2006•防城港)抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A为坐标原点,AB所在的直线为x轴,建立直角坐标系.然后将矩形ABCD绕点A逆时针旋转,使点B落在y轴的E点上,则C和D点依次落在第二象限的F点上和x轴的G点上(如图).
(1)求经过B,E,G三点的二次函数解析式;
(2)设直线EF与(1)的二次函数图象相交于另一点H,试求四边形EGBH的周长.
(3)设P为(1)的二次函数图象上的一点,BP∥EG,求P点的坐标.

manfen5.com 满分网 查看答案
(2006•佛山)已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图1,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并在图2中画出函数的草图;
②当x为何值时,S=manfen5.com 满分网
(2)如图3,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积能否等于manfen5.com 满分网?若能,求出相应x的值;若不能,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
(2006•佛山)已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
(2006•福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.