满分5 > 初中数学试题 >

(2006•芜湖)抛掷红、蓝两枚六面编号分别为1~6(整数)的质地均匀的正方体骰...

(2006•芜湖)抛掷红、蓝两枚六面编号分别为1~6(整数)的质地均匀的正方体骰子,将红色和蓝色骰子正面朝上的编号分别作为二次函数y=x2+mx+n的一次项系数m和常数项n的值.
(1)问这样可以得到多少个不同形式的二次函数?(只需写出结果)
(2)请求出抛掷红、蓝骰子各一次,得到的二次函数图象顶点恰好在x轴上的概率是多少并说明理由.
(1)直接求算出两个骰子总共出现的点数和有36种; (2)先根据二次函数图象顶点恰好在x轴上求算出n,m的值,再求满足条件的m,n的值的概率是多少即可. 【解析】 (1)根据题意知,m的值有6个,n的值有6个,所以可以得到6×6=36个不同形式的二次函数; (2)解法一:y=x2+mx+n=(x+)2+n- ∵二次函数图象顶点在x轴上, ∴, ∴m=(其中n,m为1~6的整数), 根据上式可知,当n取1~6中的完全平方数时上式才有可能成立. ∴n的值只能取完全平方数1和4, 通过计算可知,当n=1,m=2和n=4,m=4满足, 由此抛掷红、蓝骰子各一次,得到的二次函数图象顶点在x轴上的概率是; 解法二:∵二次函数图象顶点落在x轴上,即抛物线与x轴只有一个交点, △=m2-4n=0, ∴m=(其中n,m为1~6的整数), 根据上式可知,只有当n取1~6中的完全平方数时上式才有可能成立, ∴n的值只能取完全平方数1和4, 通过计算可知,当n=1,m=2和n=4,m=4满足△=m2-4n=0, 由此抛掷红、蓝骰子各一次,得到的二次函数图象顶点在x轴上的概率是.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网(2006•岳阳)如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M.
(1)请判断△DMF的形状,并说明理由.
(2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围.
查看答案
(2006•安顺)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

manfen5.com 满分网 查看答案
(2006•巴中)已知:⊙P是边长为6的等边△ABC的外接圆,以过点A的直径所在直线为x轴,以BC所在直线为y轴建立平面直角坐标系,x轴与⊙P交于点D.
(1)求A,B,D三点坐标.
(2)求过A,B,D三点的抛物线的解析式.
(3)⊙P的切线交x轴正半轴于点M,交y轴正半轴于点N,切点为点E,且∠NMO=30°,试判断直线MN是否过抛物线的顶点?并说明理由.

manfen5.com 满分网 查看答案
(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•北京)已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.