满分5 > 初中数学试题 >

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4, (1...

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网
(1)根据AB=AC,可得∠ABC=∠C,利用等量代换可得∠ABC=∠D然后即可证明△ABE∽△ADB. (2)根据△ABE∽△ADB,利用其对应边成比例,将已知数值代入即可求得AB的长. (3)连接OA,根据BD为⊙O的直径可得∠BAD=90°,利用勾股定理求得BD,然后再求证∠OAF=90°即可. (1)证明:∵AB=AC, ∴∠ABC=∠C(等边对等角), ∵∠C=∠D(同弧所对的圆周角相等), ∴∠ABC=∠D(等量代换), 又∵∠BAE=∠DAB, ∴△ABE∽△ADB, (2)【解析】 ∵△ABE∽△ADB, ∴, ∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12, ∴AB=. (3)【解析】 直线FA与⊙O相切,理由如下: 连接OA,∵BD为⊙O的直径, ∴∠BAD=90°, ∴=4 BF=BO=, ∵AB=, ∴BF=BO=AB, ∴∠OAF=90°, ∴OA⊥AF, ∴直线FA与⊙O相切.
复制答案
考点分析:
相关试题推荐
如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:manfen5.com 满分网,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度数等于______度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同
(1)一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少 (用树状图或列表法求解)?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;
(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.

manfen5.com 满分网 查看答案
贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.
manfen5.com 满分网
请你根据图中所给信息解答下列问题:
(1)一等奖所占的百分比是______
(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;
(3)各奖项获奖学生分别有多少人?
查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2-x-1=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.