满分5 > 初中数学试题 >

如图,对称轴为直线x=的抛物线经过点A(-6,0)和点B(0,4). (1)求抛...

如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?
②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.•

manfen5.com 满分网
(1)根据对称轴设抛物线的解析式为y=a(x+)2+k,将A、B两点坐标代入,列方程组求a、k的值; (2)根据平行四边形的性质可知S=2S△OAE,△OAE的底为AO,高为E点纵坐标的绝对值,由此列出函数关系式,①当S=24时,由函数关系式得出方程,求x的值,再逐一判断;②不存在,只有当0E⊥AE且OE=AE时,□OEAF是正方形,由此求出E点坐标,判断E点坐标是否在抛物线上. 【解析】 (1)设抛物线的解析式为y=a(x+)2+k(k≠0), 则依题意得:a+k=0,a+k=4 解之得:a=, k=- 即:y=(x+)2-,顶点坐标为(-,-); (2)∵点E(x,y)在抛物线上,且位于第三象限. ∴S=2S△OAE=2××0A×(-y) =-6y =-4(x+)2+25  (-6<x<-1); ①当S=24时,即-4(x+)2+25=24, 解之得:x1=-3,x2=-4 ∴点E为(-3,-4)或(-4,-4) 当点E为(-3,-4)时,满足OE=AE,故□OEAF是菱形; 当点E为(-4,-4)时,不满足OE=AE,故□OEAF不是菱形. ②不存在. 当0E⊥AE且OE=AE时,□OEAF是正方形,此时点E的坐标为(-3,-3), 而点E不在抛物线上,故不存在点E,使□OEAF为正方形.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:DE为⊙O的切线;
(2)若⊙O的半径为5,∠BAC=60°,求DE的长.

manfen5.com 满分网 查看答案
如图,某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即tanα)为1:1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1:1.4,已知堤坝总长度为4000米.
(1)求完成该工程需要多少土方?
(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?

manfen5.com 满分网 查看答案
如图所示,在▱ABCD中,点E,F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连接______
(2)猜想:______=______
(3)证明.

manfen5.com 满分网 查看答案
如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1
(1)写出点D1的坐标______,点D旋转到点D1所经过的路线长______

manfen5.com 满分网 查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.